Skip to main content
Log in

The Effect of Water Plasticization on the Molecular Mobility and Crystallization Tendency of Amorphous Disaccharides

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To study how water plasticization affects the molecular mobility and crystallization tendency of freeze-dried trehalose, sucrose, melibiose and cellobiose.

Methods

Freeze-dried disaccharides were subjected to different relative humidity atmospheres and their physical stabilities were evaluated. Lyophilizate water sorption tendencies and glass transition temperatures were modeled using Brunauer-Emmett-Teller (BET) and Gordon-Taylor (GT) equations, respectively. Sucrose and cellobiose crystallization tendencies were compared by using the concept of reduced crystallization temperature (RCT), and the molecular mobilities of trehalose and melibiose were compared by measuring their T1H relaxation time constants.

Results

Based on the BET and GT models, water sorption tendency and the resulting plasticizing effect were different in sucrose when compared to the other disaccharides. Trehalose and melibiose exhibited generally slower crystallization rates when compared to sucrose and cellobiose. Amorphous melibiose was shown to be particularly stable within the studied water content range, which may have partly been caused by its relatively slow molecular mobility.

Conclusions

Slow amorphous-to-crystalline transition rate is known to be important for lyoprotecting excipients when formulating a robust drug product. The physical stabilities of amorphous trehalose and melibiose even with relatively high water contents might make their use advantageous in this respect compared to sucrose and cellobiose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.

    Article  PubMed  CAS  Google Scholar 

  2. Costantino HR, Carrasquillo KG, Cordero RA, Mumenthaler M, Hsu CC, Griebenow K. Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci. 1998;87:1412–20.

    Article  PubMed  CAS  Google Scholar 

  3. Wang W, Singh S, Zeng L, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96:1–26.

    Article  PubMed  CAS  Google Scholar 

  4. Yoshioka S, Miyazaki T, Aso Y, Kawanishi T. Significance of local mobility in aggregation of β-galactosidase lyophilized with trehalose, sucrose or stachyose. Pharm Res. 2007;24:1660–7.

    Article  PubMed  CAS  Google Scholar 

  5. Heljo VP, Jouppila K, Hatanpää T, Juppo AM. The Use of disaccharides in inhibiting enzymatic activity loss and secondary structure changes in freeze-dried β-galactosidase during storage. Pharm Res. 2011;28:540–52.

    Article  PubMed  CAS  Google Scholar 

  6. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97:1329–49.

    Article  PubMed  CAS  Google Scholar 

  7. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11:471–7.

    Article  PubMed  CAS  Google Scholar 

  8. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1952;2:493–500.

    Article  CAS  Google Scholar 

  9. Rodriguez Furlan LT, Lecot J, Perez Padilla A, Campderros ME, Zaritzky N. Effect of saccharides on glass transition temperatures of frozen and freeze dried bovine plasma protein. J Food Eng. 2011;106:74–9.

    Article  CAS  Google Scholar 

  10. Haque M, Roos YH. Water plasticization and crystallization of lactose in spray-dried lactose/protein mixtures. J Food Sci. 2003;69:23–9.

    Google Scholar 

  11. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  12. Zhang J, Zografi G. The relationship between “BET”—and “free volume”—derived parameters for water vapor absorption into amorphous solids. J Pharm Sci. 2000;89:1063–72.

    Article  PubMed  CAS  Google Scholar 

  13. Zhou D, Zhang G, Law D, Grant D, Schmitt E. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91:1863–72.

    Article  PubMed  CAS  Google Scholar 

  14. D’Antiga L, Dhawan A, Davenport M, Mieli-Vergani G, Bjarnason I. Intestinal absorption and permeability in paediatric short-bowel syndrome: a pilot study. J Pediatr Gastroenterol Nutr. 1999;29:588–93.

    Article  PubMed  Google Scholar 

  15. Taylor RM, Bjarnason I, Cheeseman P, Davenport M, Baker AJ, Mieli-Vergani G, Dhawan A. Intestinal permeability and absorptive capacity in children with portal hypertension. Scand J Gastroenterol. 2002;37:807–11.

    PubMed  CAS  Google Scholar 

  16. Nakamura S, Oku T, Ichinose M. Bioavailability of cellobiose by tolerance test and breath hydrogen excretion in humans. Nutrition. 2004;20:979–83.

    Article  PubMed  CAS  Google Scholar 

  17. Bell LN. Moisture effects on food’s chemical stability. In: Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP, editors. Water activity in foods. Oxford: Blackwell Publishing; 2007. p. 173–98.

    Chapter  Google Scholar 

  18. Carstensen JT, Van Scoik K. Amorphous-to-crystalline transformation of sucrose. Pharm Res. 1990;7:1278–81.

    Article  PubMed  CAS  Google Scholar 

  19. Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71:2087–93.

    Article  PubMed  CAS  Google Scholar 

  20. Hatakeyama H, Yoshida H, Nakano J. Studies on the isothermal crystallization of D-glucose and cellulose oligosaccharides by differential scanning calorimetry. Carbohydr Res. 1976;47:203–11.

    Article  PubMed  CAS  Google Scholar 

  21. Lutterotti L, Matthies S, Wenk H. MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more. Proceeding of the Twelfth International Conference on Textures of Materials. 1999;1:1599–604.

    Google Scholar 

  22. Lehto V-P, Laine E. Simultaneous determination of the heat and the quantity of vapor sorption using a novel microcalorimetric method. Pharm Res. 2000;17:701–6.

    Article  PubMed  CAS  Google Scholar 

  23. Sussich F, Cesaro A. Transitions and phenomenology of α, α-trehalose polymorphs inter-conversion. J Thermal Anal Cal. 2000;62:757–68.

    Article  CAS  Google Scholar 

  24. Sheridan P, Buckton G, Storey D. Development of a flow microcalorimetry method for the assessment of surface properties of powders. Pharm Res. 1995;12:1025–30.

    Article  PubMed  CAS  Google Scholar 

  25. Wang B, Tchessalov S, Warne NW, Pikal MJ. Impact of sucrose level on storage stability of proteins in freeze-dried solids: I. correlation of protein-sugar interaction with native structure preservation. J Pharm Sci. 2009;98:3131–44.

    Article  PubMed  CAS  Google Scholar 

  26. Hinrichs WLJ, Sanders NN, De Smedt SC, Demeester J, Frijlink HW. Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexes. J Control Release. 2005;103:465–79.

    Article  PubMed  CAS  Google Scholar 

  27. Frank GA. Measurement analysis of glass transition temperature for sucrose and trehalose aqueous solutions. J Phys Chem Ref Data. 2007;36:1279–85.

    Article  CAS  Google Scholar 

  28. Orford PD, Parker R, Ring SG. Aspects of the glass transition behavior of mixtures of carbohydrates of low molecular weight. Carbohydr Res. 1990;196:11–8.

    Article  PubMed  CAS  Google Scholar 

  29. Roos YH. Frozen state transitions in relation to freeze drying. J Therm Anal. 1997;48:535–44.

    Article  CAS  Google Scholar 

  30. Labuza T, Altunakar B. Water activity prediction and moisture sorption isotherms. In: Barbosa-Cánovas G, Fontana A, Schmidt S, Labuza T, editors. Water activity in foods—fundamentals and applications. Iowa: Blackwell Publishing; 2007. p. 109–54.

    Chapter  Google Scholar 

  31. Kawakami K, Miyoshi K, Tamura N, Yamaguchi T, Ida Y. Crystallization of sucrose glass under ambient conditions: evaluation of crystallization rate and unusual melting behavior of resultant crystals. J Pharm Sci. 2006;95:1354–63.

    Article  PubMed  CAS  Google Scholar 

  32. Lehto V-P, Tenho M, Vähä-Heikkilä K, Harjunen P, Päällysaho M, Välisaari J, Niemelä P, Järvinen K. The comparison of seven different methods to quantify the amorphous content of spray dried lactose. Powder Tech. 2006;167:85–93.

    Article  CAS  Google Scholar 

  33. Rani M, Govindarajan R, Surana R, Suryanarayanan R. Structure in dehydrated trehalose dihydrate—Evaluation of the concept of partial crystallinity. Pharm Res. 2006;23:2356–67.

    Article  PubMed  CAS  Google Scholar 

  34. Gray M, Converse A, Wyman C. Sugar monomer and oligomer solubility: data and predictions for application to biomass hydrolysis. Appl Biochem Biotechnol. 2003;105:179–93.

    Article  PubMed  Google Scholar 

  35. Roos Y. Melting and glass transitions of low molecular weight carbohydrates. Carbohydr Res. 1993;238:39–48.

    Article  CAS  Google Scholar 

  36. Mazzobre M, Del Pilar Buera M. Combined effects of trehalose and cations on the thermal resistance of β-galactosidase in freeze-dried systems. Biochim Biophys Acta. 1999;1473:337–44.

    Article  PubMed  CAS  Google Scholar 

  37. Jouppila K, Lähdesmaki M, Laine P, Savolainen M, Talja RA. Comparison of water sorption and crystallization behaviors of freeze-dried lactose, lactitol, maltose, and maltitol. Water Prop Food, Health, Pharm, Biol Syst, 10th ISOPOW. 2007; pp. 477–482.

  38. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990;23:120–6.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors wish to acknowledge The Electron Microscopy Unit of the Institute of Biotechnology, University of Helsinki for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Petteri Heljo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heljo, V.P., Nordberg, A., Tenho, M. et al. The Effect of Water Plasticization on the Molecular Mobility and Crystallization Tendency of Amorphous Disaccharides. Pharm Res 29, 2684–2697 (2012). https://doi.org/10.1007/s11095-011-0658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0658-4

KEY WORDS

Navigation