Skip to main content

Advertisement

Log in

Identification of Magnetic Nanoparticles for Combined Positioning and Lentiviral Transduction of Endothelial Cells

  • Research Paper Theme: Magnetic Nano
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The combination of magnetic nanoparticles (MNPs) with a magnetic field is a powerful approach to enable cell positioning and/or local gene therapy. Because physical requirements for MNPs differ between these two applications we have explored whether the use of different MNPs can provide site-specific positioning combined with efficient viral transduction of endothelial cells (ECs).

Methods

A variety of MNPs was screened for magnetic cell labeling and lentivirus binding. Then two different MNPs were chosen and their combined application was evaluated regarding EC magnetization and transduction efficiency.

Results

The combined use of PEI-Mag2 and NDT-Mag1 particles provided both efficient lentiviral transduction and high magnetic responsiveness of ECs that could be even retained within the vascular wall under flow conditions. The use of these MNPs did not affect biological characteristics of ECs like surface marker expression and vascular network formation. Importantly, with this method we could achieve an efficient functional overexpression of endothelial nitric oxide synthase in ECs.

Conclusions

The application of two different MNPs provides optimal results for magnetic labeling of ECs in combination with viral transduction. This novel approach could be very useful for targeted gene therapy ex vivo and site-specific cell replacement in the vascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bPAECs:

bovine pulmonary endothelial cells

CMV:

cytomegalovirus

ECs:

endothelial cells

eGFP:

enhanced green fluorescent protein

eNOS:

endothelial nitric oxide synthase

Fe:

iron

LV:

lentivirus

MNPs:

magnetic nanoparticles

MOI:

multiplicity of infection

MPS:

magnetic particle spectroscopy

NDT/PEI (0.04):

NDT-Mag1/PEI-Mag2 at a ratio of 0.04 pg Fe/VP

NDT/PEI (25):

NDT-Mag1/PEI-Mag2 at a ratio of 25 pg Fe/cell

PECAM:

platelet endothelial cell adhesion molecule

VP:

virus particle

References

  1. Oghabian MA, Farahbakhsh NM. Potential use of nanoparticle based contrast agents in MRI: a molecular imaging perspective. J Biomed Nanotechnol. 2010;6(3):203–13.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res. 2007;67(4):1555–62.

    Article  PubMed  CAS  Google Scholar 

  3. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24(6):467–74.

    Article  PubMed  CAS  Google Scholar 

  4. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 2010;62(2):144–9.

    Article  PubMed  CAS  Google Scholar 

  5. Saiyed ZM, Parasramka M, Telang SD, Ramchand CN. Extraction of DNA from agarose gel using magnetic nanoparticles (magnetite or Fe3O4). Anal Biochem. 2007;363(2):288–90.

    Article  PubMed  CAS  Google Scholar 

  6. Bele M, Hribar G, Campelj S, Makovec D, Gaberc-Porekar V, Zorko M, Gaberscek M, Jamnik J, Venturini P. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;867(1):160–4.

    Article  PubMed  CAS  Google Scholar 

  7. Mandal SM, Ghosh AK, Mandal M. Iron oxide nanoparticle assisted purification and mass spectrometry based proteolytic mapping of intact CD4+ T cells from human blood. Prep Biochem Biotechnol. 2009;39(1):20–31.

    Article  PubMed  CAS  Google Scholar 

  8. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys. 2003;36:167–81.

    Google Scholar 

  9. Ito A, Takizawa Y, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T. Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 2004;10(5–6):833–40.

    Article  PubMed  CAS  Google Scholar 

  10. Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E. Vascular tissue engineering with magnetic nanoparticles: seeing deeper. J Tissue Eng Regen Med. 2007;1(4):318–21.

    Article  PubMed  CAS  Google Scholar 

  11. Pislaru SV, Harbuzariu A, Agarwal G, Witt T, Gulati R, Sandhu NP, Mueske C, Kalra M, Simari RD, Sandhu GS. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation. 2006;114(1 Suppl):I314–8.

    PubMed  Google Scholar 

  12. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9(2):102–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J. 2007;21(10):2510–9.

    Article  PubMed  CAS  Google Scholar 

  14. del Pino P, Munoz-Javier A, Vlaskou D, Rivera GP, Plank C, Parak WJ. Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett. 2010;10(10):3914–21.

    Article  PubMed  Google Scholar 

  15. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, Schulte M, Zimmermann K, Bergemann C, Gleich B, Roell W, Weyh T, Trahms L, Nickenig G, Fleischmann BK, Pfeifer A. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci USA. 2009;106(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mykhaylyk O, Steingotter A, Perea H, Aigner J, Botnar R, Plank C. Nucleic acid delivery to magnetically-labeled cells in a 2D array and at the luminal surface of cell culture tube and their detection by MRI. J Biomed Nanotechnol. 2009;5(6):692–706.

    Article  PubMed  CAS  Google Scholar 

  17. Mykhaylyk O, Zelphati O, Rosenecker J, Plank C. siRNA delivery by magnetofection. Curr Opin Mol Ther. 2008;10(5):493–505.

    PubMed  CAS  Google Scholar 

  18. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials. 2003;24(6):1001–11.

    Article  PubMed  CAS  Google Scholar 

  19. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.

    Article  PubMed  CAS  Google Scholar 

  20. Pfeifer A, Hofmann A. Lentiviral transgenesis. Methods Mol Biol. 2009;530:391–405.

    Article  PubMed  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wenzel D, Knies R, Matthey M, Klein AM, Welschoff J, Stolle V, Sasse P, Roll W, Breuer J, Fleischmann BK. Beta(2)-adrenoceptor antagonist ICI 118,551 decreases pulmonary vascular tone in mice via a G(i/o) protein/nitric oxide-coupled pathway. Hypertension. 2009;54(1):157–63.

    Article  PubMed  CAS  Google Scholar 

  23. Sonawane ND, Szoka Jr FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem. 2003;278(45):44826–31.

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez-Antequera Y, Mykhaylyk O, van Til NP, Cengizeroglu A, de Jong JH, Huston MW, Anton M, Johnston IC, Pojda Z, Wagemaker G, Plank C. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117(16):e171–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments & Disclosures

We thank Dr. Peter Newman (University of Wisconsin) for providing a PECAM antibody and Dr. Christian Plank for helpful discussion. Funding was provided to the junior research group “Magnetic nanoparticles (MNPs)—endothelial cell replacement in injured vessels” by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia (DW) and the DFG Research Unit FOR 917 Nanoguide (AP, CP, BKF, LT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Wenzel.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzel, D., Rieck, S., Vosen, S. et al. Identification of Magnetic Nanoparticles for Combined Positioning and Lentiviral Transduction of Endothelial Cells. Pharm Res 29, 1242–1254 (2012). https://doi.org/10.1007/s11095-011-0657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0657-5

Key words

Navigation