Skip to main content

Advertisement

Log in

Alanine Aminotransferase Regulation by Androgens in Non-hepatic Tissues

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Alanine amino-transferases (ALTs) play a crucial role in drug development as a surrogate marker of liver injury where elevations in serum ALT activity are used to diagnose drug-induced liver damage. Two ALT isoforms have been characterized with disparate but overlapping tissue expression. ALT1 is primarily expressed in live; ALT2 is found in muscle and prostate tissues. We investigate ALT gene expression in diverse rodent tissues following administration of the steroidal androgen receptor (AR) agonist dihydrotestosterone and a novel tissue selective nonsteroidal agonist S-23.

Methods

Putative AR regulation of ALT expression was determined in silico by an orthologous promoter androgen response element (ARE) search. Regulation was evaluated by transient transfection of ALT promoter region constructs and qRT-PCR experiments in cultured cells and in tissues following androgen administration.

Results

Several putative AREs were found in the proximal promoter regions of ALT1 and ALT2. AREs in ALT2 but not ALT1 were capable of AR-mediated transcription. ALT2 expression was affected by castration and androgen administration in muscle and prostate but not liver tissues.

Conclusions

Androgen action in non-hepatic tissues, as opposed to xenobiotic toxicity alone, may contribute to increases in serum ALT activity following androgen administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abboud G, Kaplowitz N. Drug-induced liver injury. Drug Saf. 2007;30:277–94.

    Article  PubMed  CAS  Google Scholar 

  2. Blanc PD, Redlich CA. Elevated liver enzymes in asymptomatic patients. N Engl J Med. 2000;343:662. author reply 663.

    Article  PubMed  CAS  Google Scholar 

  3. Chen J, Kim J, Dalton JT. Discovery and therapeutic promise of selective androgen receptor modulators. Mol Interv. 2005;5:173–88.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng AS, Jin VX, Fan M, Smith LT, Liyanarachchi S, Yan PS, Leu YW, Chan MW, Plass C, Nephew KP, Davuluri RV, Huang TH. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell. 2006;21:393–404.

    Article  PubMed  CAS  Google Scholar 

  5. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol. 2003;98:960–7.

    Article  PubMed  CAS  Google Scholar 

  6. Cocciadiferro L, Miceli V, Kang KS, Polito LM, Trosko JE, Carruba G. Profiling cancer stem cells in androgen-responsive and refractory human prostate tumor cell lines. Ann N Y Acad Sci. 2009;1155:257–62.

    Article  PubMed  CAS  Google Scholar 

  7. Felig P. The glucose-alanine cycle. Metabolism. 1973;22:179–207.

    Article  PubMed  CAS  Google Scholar 

  8. Gao W, Dalton JT. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discov Today. 2007;12:241–8.

    Article  PubMed  CAS  Google Scholar 

  9. Grunfeld C, Kotler DP, Dobs A, Glesby M, Bhasin S. Oxandrolone in the treatment of HIV-associated weight loss in men: a randomized, double-blind, placebo-controlled study. J Acquir Immune Defic Syndr. 2006;41:304–14.

    Article  PubMed  CAS  Google Scholar 

  10. Hamann LG. Tissue selective androgen receptor modulators. Breckenridge: Tissue-Selective Nuclear Receptors - Keystone Symposia; 2005.

    Google Scholar 

  11. Hengge UR, Stocks K, Faulkner S, Wiehler H, Lorenz C, Jentzen W, Hengge D, Ringham G. Oxymetholone for the treatment of HIV-wasting: a double-blind, randomized, placebo-controlled phase III trial in eugonadal men and women. HIV Clin Trials. 2003;4:150–63.

    Article  PubMed  Google Scholar 

  12. Huang W, Shostak Y, Tarr P, Sawyers C, Carey M. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J Biol Chem. 1999;274:25756–68.

    Article  PubMed  CAS  Google Scholar 

  13. Huttunen E, Romppanen T, Helminen HJ. A histoquantitative study on the effects of castration on the rat ventral prostate lobe. J Anat. 1981;132:357–70.

    PubMed  CAS  Google Scholar 

  14. Johansen JA, Breedlove SM, Jordan CL. Androgen receptor expression in the levator ani muscle of male mice. J Neuroendocrinol. 2007;19:823–6.

    Article  PubMed  CAS  Google Scholar 

  15. Jones A, Chen J, Hwang DJ, Miller DD, Dalton JT. Preclinical characterization of a (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro, 4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide: a selective androgen receptor modulator for hormonal male contraception. Endocrinology. 2009;150:385–95.

    Article  PubMed  CAS  Google Scholar 

  16. Jones A, Hwang DJ, Duke CB, HE 3rd Y, Siddam A, Miller DD, Dalton JT. Nonsteroidal selective androgen receptor modulators enhance female sexual motivation. J Pharmacol Exp Ther. 2010;334:439–48.

    Article  PubMed  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  18. Lott JA, Landesman PW. The enzymology of skeletal muscle disorders. Crit Rev Clin Lab Sci. 1984;20:153–90.

    Article  PubMed  CAS  Google Scholar 

  19. Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, Wilson EM, McDonnell DP, Cidlowski JA. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 2006;58:782–97.

    Article  PubMed  CAS  Google Scholar 

  20. Marhefka CA, Gao W, Chung K, Kim J, He Y, Yin D, Bohl C, Dalton JT, Miller DD. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators. J Med Chem. 2004;47:993–8.

    Article  PubMed  CAS  Google Scholar 

  21. Nantermet PV, Xu J, Yu Y, Hodor P, Holder D, Adamski S, Gentile MA, Kimmel DB, Harada S, Gerhold D, Freedman LP, Ray WJ. Identification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventral prostate gland. J Biol Chem. 2004;279:1310–22.

    Article  PubMed  CAS  Google Scholar 

  22. Narayanan R, Coss CC, Yepuru M, Kearbey JD, Miller DD, Dalton JT. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways. Mol Endocrinol. 2008;22:2448–65.

    Article  PubMed  CAS  Google Scholar 

  23. Neischlag E, Behre HM, Nieschlag S. Testosterone: Action, deficiency, substitution. Cambridge: Cambridge University Press; 2004.

    Google Scholar 

  24. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245:194–205.

    Article  PubMed  CAS  Google Scholar 

  25. Pertusi R, Dickerman RD, McConathy WJ. Evaluation of aminotransferase elevations in a bodybuilder using anabolic steroids: hepatitis or rhabdomyolysis? J Am Osteopath Assoc. 2001;101:391–4.

    PubMed  CAS  Google Scholar 

  26. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Engl J Med. 2000;342:1266–71.

    Article  PubMed  CAS  Google Scholar 

  27. Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995;23:4878–84.

    Article  PubMed  CAS  Google Scholar 

  28. Roche PJ, Hoare SA, Parker MG. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol. 1992;6:2229–35.

    Article  PubMed  CAS  Google Scholar 

  29. Ruizeveld De Winter JA, Trapman J, Vermey M, Mulder E, Zegers ND, Van Der Kwast TH. Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem. 1991;39:927–36.

    Article  PubMed  CAS  Google Scholar 

  30. Schroeder ET, Singh A, Bhasin S, Storer TW, Azen C, Davidson T, Martinez C, Sinha-Hikim I, Jaque SV, Terk M, Sattler FR. Effects of an oral androgen on muscle and metabolism in older, community-dwelling men. Am J Physiol Endocrinol Metab. 2003;284:E120–8.

    PubMed  CAS  Google Scholar 

  31. Segal S, Narayanan R, Dalton JT. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery. Expert Opin Investig Drugs. 2006;15:377–87.

    Article  PubMed  CAS  Google Scholar 

  32. Song CS, Rao TR, Demyan WF, Mancini MA, Chatterjee B, Roy AK. Androgen receptor messenger ribonucleic acid (mRNA) in the rat liver: changes in mRNA levels during maturation, aging, and calorie restriction. Endocrinology. 1991;128:349–56.

    Article  PubMed  CAS  Google Scholar 

  33. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–86.

    Article  PubMed  CAS  Google Scholar 

  34. Vieira RP, Franca RF, Damaceno-Rodrigues NR, Dolhnikoff M, Caldini EG, Carvalho CR, Ribeiro W. Dose-dependent hepatic response to subchronic administration of nandrolone decanoate. Med Sci Sports Exerc. 2008;40:842–7.

    Article  PubMed  CAS  Google Scholar 

  35. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-Saban S, Safran M, Domany E, Lancet D, Shmueli O. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics. 2005;21:650–9.

    Article  PubMed  CAS  Google Scholar 

  36. Yang RZ, Blaileanu G, Hansen BC, Shuldiner AR, Gong DW. cDNA cloning, genomic structure, chromosomal mapping, and functional expression of a novel human alanine aminotransferase. Genomics. 2002;79:445–50.

    Article  PubMed  CAS  Google Scholar 

  37. Yang RZ, Park S, Reagan WJ, Goldstein R, Zhong S, Lawton M, Rajamohan F, Qian K, Liu L, Gong DW. Alanine aminotransferase isoenzymes: molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatology. 2009;49:598–607.

    Article  PubMed  CAS  Google Scholar 

  38. Yuan JS, Reed A, Chen F, Stewart Jr CN. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006;7:85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments & Disclosures

We thank Drs. Jeffrey Kearbey and Amanda Jones for their discussions and help with the in vivo studies and Dr. Victor Jin for sharing MatInd code. Also Terry Costello, Katie Kail and Stacey Lindsey were invaluable in the implementation of the in vivo work.

All authors are employees of GTx, Inc. and hold stock options in the company. D.D.M. and J.T.D. are inventors on SARM patents and may receive invention royalties from the University of Tennessee Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Dalton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coss, C.C., Bauler, M., Narayanan, R. et al. Alanine Aminotransferase Regulation by Androgens in Non-hepatic Tissues. Pharm Res 29, 1046–1056 (2012). https://doi.org/10.1007/s11095-011-0649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0649-5

KEY WORDS

Navigation