Skip to main content

Advertisement

Log in

Optimizing Adenoviral Transduction of Endothelial Cells under Flow Conditions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To target adenoviral vectors to cells of the vasculature and shielding vectors from inactivation by the immune system.

Methods

Complexes of reporter gene expressing adenoviral vectors with positively charged magnetic nanoparticles were formed by electrostatic interaction in presence or absence of additional negatively charged poly(ethylene glycol)-based polymer. Transduction of HUVEC was analyzed in vitro under flow. Protection from inactivation by the immune system was analyzed by pre-incubation of AdV and complexes with neutralizing antibodies and subsequent reporter protein analysis of infected cells.

Results

Physical association of AdV with MNP and polymers was demonstrated by radioactive labelling of components and co-sedimentation in a magnetic field. Ad-MNP+/−polymer resulted in efficient transduction of HUVEC, depending on MOI and flow rate in presence of magnetic field, whereas no transduction was observed without complex formation with MNP or in absence of magnetic field. Association with MNP did result in protection from neutralizing antibodies, with slightly increased protection provided by the polymer.

Conclusions

Complex formation of AdV with MNP is a viable means for targeting of vectors to areas of magnetic field gradient. Additional coating with polymer might proof useful in protection from inactivation by the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AdV:

adenoviral vectors

CMV:

cytomegalovirus

eGFP:

enhanced green fluorescent protein

HUVEC:

human umbilical cord venous endothelial cells

Luc:

firefly luciferase

MNP:

magnetic nanoparticles

MOI:

multiplicity of infection

PBS:

phosphate buffered saline

PEG:

poly(ethylene glycol)

PEI:

poly(ethylene imine)

PFU:

plaque forming units

PM:

polymer P6YE5C

VP:

virus particles

REFERENCES

  1. Mitani K, Graham FL, Caskey CT, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci U S A. 1995;92:3854–8.

    Article  PubMed  CAS  Google Scholar 

  2. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. A helper-dependent adenovirus system: removal of helper virus by Cre-mediated excision of viral packaging signal. Proc Natl Acad Sci U S A. 1996;93:13565–70.

    Article  PubMed  CAS  Google Scholar 

  3. Eto Y, Gao JQ, Sekiguchi F, Kurachi S, Katayama K, Mizuguchi H, et al. Neutralizing antibody evasion ability of adenovirus vector induced by the bioconjugation of methoxypolyethylene glycol succinimidyl propionate (MPEG-SPA). Biol Pharm Bull. 2004;27:936–8.

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki-Kouyama E, Katayama K, Sakurai F, Yamaguchi T, Kurachi S, Kawabata K, et al. Hexon-specific PEGylated adenovirus vectors utilizing avidin-biotin interaction. Biomaterials. 2011;32:1724–30.

    Article  PubMed  CAS  Google Scholar 

  5. Park JW, Mok H, Park TG. Physical adsorption of PEG grafted and blocked poly-L-lysine copolymers on adenovirus surface for enhanced gene transduction. J Control Release. 2010;142:238–44.

    Article  PubMed  CAS  Google Scholar 

  6. Nettelbeck DM, Miller DW, Jerome V, Zuzarte M, Watkins SJ, Hawkins RE, et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther. 2001;3:882–91.

    Article  PubMed  CAS  Google Scholar 

  7. Morishita K, Johnson DE, Williams LT. A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem. 1995;270:27948–53.

    Article  PubMed  CAS  Google Scholar 

  8. Nicklin SA, Reynolds PN, Brosnan MJ, White SJ, Curiel DT, Dominiczak AF, et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension. 2001;38:65–70.

    PubMed  CAS  Google Scholar 

  9. Denby L, Work LM, Graham D, Hsu C, von Seggern DJ, Nicklin SA, et al. Adenoviral serotype 5 vectors pseudotyped with fibers from subgroup D show modified tropism in vitro and in vivo. Hum Gene Ther. 2004;15:1054–64.

    PubMed  CAS  Google Scholar 

  10. Nicklin SA, Wu E, Nemerow GR, Baker AH. The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther. 2005;12:384–93.

    Article  PubMed  CAS  Google Scholar 

  11. Shinozaki K, Suominen E, Carrick F, Sauter B, Kahari VM, Lieber A, et al. Efficient infection of tumor endothelial cells by a capsid-modified adenovirus. Gene Ther. 2006;13:52–9.

    Article  PubMed  CAS  Google Scholar 

  12. Nicklin SA, Von Seggern DJ, Work LM, Pek DC, Dominiczak AF, Nemerow GR, et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther. 2001;4:534–42.

    Article  PubMed  CAS  Google Scholar 

  13. Nicklin SA, White SJ, Nicol CG, Von Seggern DJ, Baker AH. In vitro and in vivo characterisation of endothelial cell selective adenoviral vectors. J Gene Med. 2004;6:300–8.

    Article  PubMed  CAS  Google Scholar 

  14. O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999;10:1349–58.

    Article  PubMed  Google Scholar 

  15. Croyle MA, Chirmule N, Zhang Y, Wilson JM. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther. 2002;13:1887–900.

    Article  PubMed  CAS  Google Scholar 

  16. Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther. 2008;16:16–29.

    Article  PubMed  CAS  Google Scholar 

  17. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 2001;8:341–8.

    Article  PubMed  CAS  Google Scholar 

  18. Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther. 2005;11:66–79.

    Article  PubMed  CAS  Google Scholar 

  19. Ogawara K, Rots MG, Kok RJ, Moorlag HE, Van Loenen AM, Meijer DK, et al. A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum Gene Ther. 2004;15:433–43.

    Article  PubMed  CAS  Google Scholar 

  20. Parker AL, Fisher KD, Oupicky D, Read ML, Nicklin SA, Baker AH, et al. Enhanced gene transfer activity of peptide-targeted gene-delivery vectors. J Drug Target. 2005;13:39–51.

    Article  PubMed  CAS  Google Scholar 

  21. Espenlaub S, Corjon S, Engler T, Fella C, Ogris M, Wagner E, et al. Capsomer-specific fluorescent labeling of adenoviral vector particles allows for detailed analysis of intracellular particle trafficking and the performance of bioresponsive bonds for vector capsid modifications. Hum Gene Ther. 2010;21:1155–67.

    Article  PubMed  CAS  Google Scholar 

  22. Kreppel F, Gackowski J, Schmidt E, Kochanek S. Combined genetic and chemical capsid modifications enable flexible and efficient de- and retargeting of adenovirus vectors. Mol Ther. 2005;12:107–17.

    Article  PubMed  CAS  Google Scholar 

  23. Arcasoy SM, Latoche JD, Gondor M, Pitt BR, Pilewski JM. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther. 1997;4:32–8.

    Article  PubMed  CAS  Google Scholar 

  24. Fasbender A, Zabner J, Chillon M, Moninger TO, Puga AP, Davidson BL, et al. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem. 1997;272:6479–89.

    Article  PubMed  CAS  Google Scholar 

  25. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–9.

    Article  PubMed  CAS  Google Scholar 

  26. Tresilwised N, Pithayanukul P, Mykhaylyk O, Holm PS, Holzmuller R, Anton M, et al. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol Pharm. 2010;7:1069–89.

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Antequera Y, Mykhaylyk O, van Til NP, Cengizeroglu A, de Jong JH, Huston MW, Anton M, Johnston IC, Pojda Z, Wagemaker G, Plank C. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117:e171–181.

    Google Scholar 

  28. Chorny M, Fishbein I, Alferiev I, Levy RJ. Magnetically responsive biodegradable nanoparticles enhance adenoviral gene transfer in cultured smooth muscle and endothelial cells. Mol Pharm. 2009;6:1380–7.

    Article  PubMed  CAS  Google Scholar 

  29. Bhattarai SR, Kim SY, Jang KY, Lee KC, Yi HK, Lee DY, et al. Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. J Virol Methods. 2008;147:213–8.

    Article  PubMed  CAS  Google Scholar 

  30. Hashimoto M, Hisano Y. Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J Neurosci Methods. 2011;194:316–20.

    Article  PubMed  CAS  Google Scholar 

  31. Bhattarai SR, Kim SY, Jang KY, Lee KC, Yi HK, Lee DY, et al. N-hexanoyl chitosan-stabilized magnetic nanoparticles: enhancement of adenoviral-mediated gene expression both in vitro and in vivo. Nanomedicine. 2008;4:146–54.

    Article  PubMed  CAS  Google Scholar 

  32. Finsinger D, Remy JS, Erbacher P, Koch C, Plank C. Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery. Gene Ther. 2000;7:1183–92.

    Article  PubMed  CAS  Google Scholar 

  33. Honig D, DeRouchey J, Jungmann R, Koch C, Plank C, Radler JO. Biophysical characterization of copolymer-protected gene vectors. Biomacromolecules. 2010;11:1802–9.

    Article  PubMed  CAS  Google Scholar 

  34. Schillinger U, Wexel G, Hacker C, Kullmer M, Koch C, Gerg M, et al. A fibrin glue composition as carrier for nucleic Acid vectors. Pharm Res. 2008;25:2946–62.

    Article  PubMed  CAS  Google Scholar 

  35. Scherer F, Schillinger U, Putz U, Stemberger A, Plank C. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J Gene Med. 2002;4:634–43.

    Article  PubMed  CAS  Google Scholar 

  36. Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL. An enhanced system for construction of adenoviral vectors by the two- plasmid rescue method. Hum Gene Ther. 2000;11:693–9.

    Article  PubMed  CAS  Google Scholar 

  37. Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–67.

    Article  PubMed  CAS  Google Scholar 

  38. Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Hammerschmid E, Anton M, Zelphati O, et al. Liposomal magnetofection. Meth Mol Biol. 2010;605:487–525.

    Article  CAS  Google Scholar 

  39. Mykhaylyk O, Zelphati O, Rosenecker J, Plank C. siRNA delivery by magnetofection. Curr Opin Mol Ther. 2008;10:493–505.

    PubMed  CAS  Google Scholar 

  40. Carlisle RC, Di Y, Cerny AM, Sonnen AF, Sim RB, Green NK, et al. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood. 2009;113:1909–18.

    Article  PubMed  CAS  Google Scholar 

  41. Mykhaylyk O, Sobisch T, Anton M, Brandt S, Döblinger M, Eberbeck D, Almstätter I, Settles M, Braren R, Lerche D, Plank C. Silica-iron oxide magnetic nanoparticles modified for gene delivery. Search for optimum and quantitative criteria. Pharm Res (2011) accepted

  42. Chorny M, Fishbein I, Alferiev IS, Nyanguile O, Gaster R, Levy RJ. Adenoviral gene vector tethering to nanoparticle surfaces results in receptor-independent cell entry and increased transgene expression. Mol Ther. 2006;14:382–91.

    Article  PubMed  CAS  Google Scholar 

  43. Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials (2011) Oct 4. [Epub ahead of print]. doi:10.1016/j.biomaterials.2011.09.28

  44. de Graaff JC, Ubbink DT, Lagarde SM, Jacobs MJ. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold. Microvasc Res. 2002;63:270–8.

    Article  PubMed  Google Scholar 

  45. Immer FF, Seiler AM, Aeschbacher BC, Mahler F, Saner H. Influence of the ultrasound contrast agent Levovist on human nailfold capillary microcirculation. Angiology. 2000;51:123–9.

    Article  PubMed  CAS  Google Scholar 

  46. Vlaskou D, Mykhaylyk O, Krotz F, Hellwig N, Renner R, Schillinger U, et al. Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery. Adv Funct Mater. 2010;20:3881–94.

    Article  CAS  Google Scholar 

  47. Danielsson A, Elgue G, Nilsson BM, Nilsson B, Lambris JD, Totterman TH, et al. An ex vivo loop system models the toxicity and efficacy of PEGylated and unmodified adenovirus serotype 5 in whole human blood. Gene Ther. 2010;17:752–62.

    Article  PubMed  CAS  Google Scholar 

  48. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc. 2003;125:10192–3.

    Article  PubMed  CAS  Google Scholar 

  49. Huh YM, Lee ES, Lee JH, Jun YW, Kim PH, Yun CO, et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater. 2007;19:3109–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments & Disclosures

This work was supported by the German Research Foundation, through DFG Research Unit FOR917 Nanoguide (AN 333/1-1 and Projects PL 281/3-1). We thank Katja Dumler for excellent technical assistance.

C.P. is a co-founder of OZ Biosciences, SA, Marseille France. OZBiosciences commercializes reagents for magnetofection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Anton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anton, M., Wolf, A., Mykhaylyk, O. et al. Optimizing Adenoviral Transduction of Endothelial Cells under Flow Conditions. Pharm Res 29, 1219–1231 (2012). https://doi.org/10.1007/s11095-011-0631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0631-2

KEY WORDS

Navigation