Skip to main content
Log in

Inorganic-Organic Magnetic Nanocomposites for use in Preventive Medicine: A Rapid and Reliable Elimination System for Cesium

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the potential use of Prussian blue-coated magnetic nanoparticles, termed “Prussian blueberry”, to bring about the magnetic elimination of cesium.

Methods

Prussian blueberry were prepared by a layer-by-layer assembly method. The morphology, structure and physical properties of the Prussian blueberry were investigated as was their ability to magnetically eliminate cesium.

Results

We confirmed that Prussian blueberry were composed of a magnetite nanoparticle-core and a Prussian blue-shell. Under a magnetic field, Prussian blueberry (5 mg) reduced the cesium concentration of seawater (3 ml) from 150 ppm to about 50 ppm; but regular Prussian blue could not magnetically eliminate cesium. Moreover, Prussian blueberry removed a similar proportion of cesium from a larger volume of seawater, and from fetal bovine serum and cow’s milk.

Conclusions

Under a magnetic field, Prussian blueberry was able to rapidly eliminate cesium from seawater and from biological matrices such as serum and milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Leon JD, Jaffe DA, Kaspar J, Knecht A, Miller ML, Robertson RG, et al. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J. Environ. Radioact. 2011 (in press).

  2. Pittauerová D, Hettwig B, Fischer HW. Fukushima fallout in Northwest German environmental media. J Environ Radioact 2011 (in press).

  3. Lozano RL, Hernández-Ceballos MA, Adame JA, Casas-Ruíz M, Sorribas M, Miguel EG, et al. Radioactive impact of Fukushima accident on the Iberian Peninsula: Evolution and plume previous pathway. Environ Int 2011 (in press).

  4. Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C. Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. J Environ Radioact. 2011;102:796–7.

    Article  PubMed  CAS  Google Scholar 

  5. Davis JJ, Foster RF. Bioaccumulation of radioisotopes through aquatic food chains. Ecology. 1958;39:530–5.

    Article  CAS  Google Scholar 

  6. Morgan F. The uptake of radioactivity by fish and shellfish I. Caesium-134 by whole animals. J Mar Biol Ass UK. 1964;44:259–71.

    Article  Google Scholar 

  7. Kawamatsu F, Ishikawa Y. Natural variation of radionuclide 137Cs concentration in marine organisms with special reference to the effect of food habits and trophic level. Mar Ecol Prog Ser. 1997;160:109–20.

    Article  Google Scholar 

  8. Duff MC, Ramsey ML. Accumulation of radiocesium by mushrooms in the environment: a literature review. J Environ Radioact. 2008;99:912–32.

    Article  PubMed  CAS  Google Scholar 

  9. Koulikov AO, Meili M. Modeling the dynamics of fish contamination by Chernobyl radiocaesium: an analytical solution based on potassium mass balance. J Environ Radioact. 2003;66:309–26.

    Article  PubMed  CAS  Google Scholar 

  10. Hahn FF, Muggenburg BA, Boecker BB. Hepatic neoplasms from internally deposited 144CeCl3. Toxicol Pathol. 1996;24:281–9.

    Article  PubMed  CAS  Google Scholar 

  11. Romanenko A, Morimura K, Wanibuchi H, Salim EI, Kinoshita A, Kaneko M, et al. Increased oxidative stress with gene alteration in urinary bladder urothelium after the Chernobyl accident. Int J Cancer. 2000;86:790–8.

    Article  PubMed  CAS  Google Scholar 

  12. Romanenko A, Morell-Quadreny L, Nepomnyaschy V, Vozianov A, Llombart-Bosch A. Pathology and proliferative activity of renal-cell carcinomas (RCCS) and renal oncocytomas in patients with different radiation exposure after the Chernobyl accident in Ukraine. Int J Cancer. 2000;87:880–3.

    Article  PubMed  CAS  Google Scholar 

  13. Thompson DF, Church CO. Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy. 2001;21:1364–7.

    Article  PubMed  CAS  Google Scholar 

  14. Farina R, Brandão-Mello CE, Oliveira AR. Medical aspects of 137Cs decorporation: the Goiânia radiological accident. Health Phys. 1991;60:63–6.

    Article  PubMed  CAS  Google Scholar 

  15. Pearce J, Unsworth EF, McMurray CH, Moss BW, Logan E, Rice D, et al. The effects of Prussian blue provided by indwelling rumen boli on the tissue retention of dietary radiocaesium by sheep. Sci Total Environ. 1989;85:349–55.

    Article  PubMed  CAS  Google Scholar 

  16. Unsworth EF, Pearce J, McMurray CH, Moss BW, Gordon FJ, Rice D. Investigations of the use of clay minerals and Prussian blue in reducing the transfer of dietary radiocaesium to milk. Sci Total Environ. 1989;85:339–47.

    Article  PubMed  CAS  Google Scholar 

  17. Kargacin B, Kostial K. Reduction of 85Sr, 137Cs, 131I and 141Ce retention in rats by simultaneous oral administration of calcium alginate, ferrihexacyanoferrate(II), KI and Zn-DTPA. Health Phys. 1985;49:859–64.

    Article  PubMed  CAS  Google Scholar 

  18. Stather JW. Influence of Prussian blue on metabolism of 137 Cs and 86 Rb in rats. Health Phys. 1972;22:1–8.

    Article  PubMed  CAS  Google Scholar 

  19. Tedeschi C, Möhwald H, Kirstein S. Polarity of layer-by-layer deposited polyelectrolyte films as determined by pyrene fluorescence. J Am Chem Soc. 2001;123:954–60.

    Article  PubMed  CAS  Google Scholar 

  20. Yoon HC, Kim HS. Multilayered assembly of dendrimers with enzymes on gold: thickness-controlled biosensing interface. Anal Chem. 2000;72:922–6.

    Article  PubMed  CAS  Google Scholar 

  21. Rao SV, Anderson KW, Bachas LG. Controlled layer-by-layer immobilization of horseradish peroxidase. Biotechnol Bioeng. 1999;65:389–96.

    Article  PubMed  CAS  Google Scholar 

  22. Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 2009;4:598–606.

    Article  PubMed  CAS  Google Scholar 

  23. Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y, et al. Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Accounts Chem Res. 2011;44:1080–93.

    Article  CAS  Google Scholar 

  24. Herring A. Japanese Salt and Foreign Salt. In: Herring A, editor. Tobacco & salt museum. Japan: Tobacco and Salt Museum; 2010. p. 67–95.

    Google Scholar 

  25. Woodcock CL, Woodcock H, Horowitz RA. Ultrastructure of chromatin: negative staining of isolated fibers. J Cell Sci. 1991;99:99–106.

    PubMed  Google Scholar 

  26. Fuchigami T, Kawamura R, Kitamoto Y, Nakagawa M, Namiki Y. Ferromagnetic FePt-nanoparticles/polycation hybrid capsules designed for a magnetically guided drug delivery system. Langmuir. 2011;27:2923-8.

    Google Scholar 

  27. Namiki Y, Matsunuma S, Inoue T, Koido S, Tsubota A, Kuse Y, Tada N. Magnetic nanostructures for biomedical application. In: Masuda Y, editor. Nanocrystal. Rijeka: Sciyo; 2011. p. 349–72.

    Google Scholar 

  28. Luo L, Liu J, Wang Z, Yang X, Dong S, Wang E. Fabrication of layer-by-layer deposited multilayer films containing DNA and its interaction with methyl green. Biophys Chem. 2001;94:11–22.

    Article  PubMed  CAS  Google Scholar 

  29. Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T. Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection-absorption spectroscopy. Langmuir. 1998;14:4559–65.

    Article  CAS  Google Scholar 

  30. Vanhoe H, Vandecasteele C, Versieck J, Dams R. Determination of iron, cobalt, copper, zinc, rubidium, molybdenum and cesium in human serum by inductively coupled plasma mass spectrometry. Anal Chem. 1989;61:1851–7.

    Article  PubMed  CAS  Google Scholar 

  31. Bulte JW, De Cuyper M. Magnetoliposomes as contrast agents. In: Abelson, JN.; Simon, MI. Editors. Liposomes. Elsevier, USA: Academic Press; 2003, p.175–98.

  32. Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, et al. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal. 2008;47:114–25.

    Article  PubMed  CAS  Google Scholar 

  33. Yang Y, Faustino PJ, Progar JJ, Brownell CR, Sadrieh N, May JC, et al. Quantitative determination of thallium binding to ferric hexacyanoferrate: Prussian blue. Int J Pharm. 2008;353:187–94.

    Article  PubMed  CAS  Google Scholar 

  34. Pajerowski DM, Andrus MJ, Gardner JE, Knowles ES, Meisel MW, Talham DR. Persistent photoinduced magnetism in heterostructures of Prussian blue analogues. J Am Chem Soc. 2010;132:4058–9.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang XQ, Gong SW, Zhan Y, Yang T, Wang CY, Gu N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem. 2010;20:5110–6.

    Article  CAS  Google Scholar 

  36. Wang H, Huang Y. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H(2)O(2). J Hazard Mater. 2011;191:163–9.

    Article  PubMed  CAS  Google Scholar 

  37. Urban I, Ratcliffe NM, Duffield JR, Elder GR, Patton D. Functionalized paramagnetic nanoparticles for waste water treatment. Chem Commun. 2010;46:4583–5.

    Article  CAS  Google Scholar 

  38. Smith JT. The influence of hot particle contamination on (90)Sr and (137)Cs transfers to milk and on time-integrated ingestion doses. J Environ Radioact. 2009;100:322–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments & Disclosures

We dedicate this work to the late T. Terada, the late K. Nariai, and the many people who suffered in the March 11 disaster. We would like to acknowledge the staff of our respective institutes for their assistance. This work was supported by a Funding Program for the Next Generation of World-Leading Researchers (LS114) from the JSPS and by an Industrial Technology Research Grant (08C46049a) from the NEDO of Japan. The authors also wish to thank Mr. C.W.P. Reynolds, associated with the Department of International Medical Communications of Tokyo Medical University, for his careful and detailed assistance with the English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Namiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namiki, Y., Namiki, T., Ishii, Y. et al. Inorganic-Organic Magnetic Nanocomposites for use in Preventive Medicine: A Rapid and Reliable Elimination System for Cesium. Pharm Res 29, 1404–1418 (2012). https://doi.org/10.1007/s11095-011-0628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0628-x

KEY WORDS

Navigation