Skip to main content
Log in

Amphotericin B/Sterol Co-loaded PEG-Phospholipid Micelles: Effects of Sterols on Aggregation State and Hemolytic Activity of Amphotericin B

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To elucidate the effect of sterols on the aggregation of amphotericin B (AmB) in PEG-phospholipid micelles and its consequences on the hemolytic activity of AmB.

Methods

AmB-incorporated PEG-phospholipid micelles co-loaded with ergosterol, cholesterol, or 7-dehydrocholesterol were prepared at 4:1:1 and 20:5:1 ratios of polymer-to-sterol-to-AmB. The aggregation state of AmB was elucidated by UV–vis spectroscopy. AmB/sterol co-loaded PEG-phospholipid micelles were incubated with red blood cells and the hemolytic activity of AmB assessed by measurement of free hemoglobin.

Results

AmB in PEG-phospholipid micelles stayed mostly in a deaggregated state in the absence of sterol or with cholesterol, but aggregated in the presence of ergosterol or 7-dehydrocholesterol. The fraction of aggregated AmB in PEG-phospholipid micelles was lower at the 20:5:1 ratio. In an aggregated state or in the absence of sterol, AmB caused rapid and complete hemolysis. In contrast, deaggregated AmB co-loaded with cholesterol caused slower and incomplete hemolysis, especially at a 20:5:1 ratio.

Conclusions

The aggregation state of AmB in PEG-phospholipid micelles was sterol dependant. AmB/cholesterol co-loaded PEG-phospholipid micelles caused low in vitro hemolysis due to deaggregation of AmB and micellar stability, presumably owing to cholesterol/phospholipid versus cholesterol/AmB interactions in the interior core region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. New Engl J Med. 2003;348(16):1546–54.

    Article  PubMed  Google Scholar 

  2. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.

    Article  PubMed  CAS  Google Scholar 

  3. Laniado-Laborinand R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoamericana Micol. 2009;26(4):223–7.

    Article  Google Scholar 

  4. Vakil R, Kwon GS. PEG-phospholipid micelles for the delivery of amphotericin B. J Contr Release. 2005;101(1–3):386–9.

    CAS  Google Scholar 

  5. Diezi TA, Bae Y, Kwon GS. Enhanced stability of PEG-block-poly(N-hexyl stearate L-aspartamide) micelles in the presence of serum proteins. Mol Pharm. 2010;7(4):1355–60.

    Article  PubMed  CAS  Google Scholar 

  6. Vakil R, Kwon GS. Effect of cholesterol on the release of amphotericin B from PEG-Phospholilpid micelles. Mol Pharm. 2008;5(1):98–104.

    Article  PubMed  CAS  Google Scholar 

  7. Barwicz J, Tancrede P. The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergosterol-containing phosphatidylcholine monolayers. Chem Phys Lipids. 1997;85(2):145–55.

    Article  PubMed  CAS  Google Scholar 

  8. Fournier I, Barwicz J, Tancrede P. The structuring effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers: a differential scanning calorimetry study. Biochim Biophys Acta Biomembr. 1998;1373(1):76–86.

    Article  CAS  Google Scholar 

  9. Charbonneau C, Fournier I, Dufresne S, Barwicz J, Tancrede P. The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy. Biophys Chem. 2001;91(2):125–33.

    Article  PubMed  CAS  Google Scholar 

  10. Lukyanov AN, Hartner WC, Torchilin VP. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Contr Release. 2004;94(1):187–93.

    Article  CAS  Google Scholar 

  11. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: Effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.

    Article  PubMed  CAS  Google Scholar 

  12. Shin HC, Alani AWG, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release. 2009;140(3):294–300.

    Article  PubMed  CAS  Google Scholar 

  13. Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly( beta-benzyl-L-aspartate) micelles. J Control Release. 1998;56(1–3):285–91.

    Article  PubMed  CAS  Google Scholar 

  14. Vakil R, Knilans K, Andes D, Kwon GS. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Pharm Res. 2008;25(9):2056–64.

    Article  PubMed  CAS  Google Scholar 

  15. Demel RA, Bruckdorfer KR, Van Deenen LLM. Effect of sterol structure on permeability of liposomes to glucose, glycerol and RB+. Biochim Biophys Acta. 1972;255(1):321–30.

    Article  PubMed  CAS  Google Scholar 

  16. Langlet J, Bergès J, Caillet J, Demaret JP. Theoretical study of the complexation of amphotericin B with sterols. Biochim Biophys Acta Biomembr. 1994;1191(1):79–93.

    Article  CAS  Google Scholar 

  17. Gruszecki WI, Gagos M, Herec M. Dimers of polyene antibiotic amphotericin B detected by means of fluorescence spectroscopy: molecular organization in solution and in lipid membranes. J Photochem Photobiol B Biol. 2003;69(1):49–57.

    Article  CAS  Google Scholar 

  18. Chapados C, Barwicz J, Gruda I. Separation of overlapping spectra from evolving systems using factor-analysis.2. Amphotericin B in aqueous propanol and in aqueous lauroyl sucrose. Biophys Chem. 1994;51(1):71–80.

    Article  CAS  Google Scholar 

  19. Kawabata M, Onda M, Mita T. Effect of aggregation of amphotericin B on lysophosphatidylcholine micelles as related to its complex formation with cholesterol or ergosterol. J Biochem. 2001;129(5):725–32.

    Article  PubMed  CAS  Google Scholar 

  20. Aramwit P, Yu BG, Lavasanifar A, Samuel J, Kwon GS. The effect of serum albumin on the aggregation state and toxicity of amphotericin B. J Pharm Sci. 2000;89(12):1589–93.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We gratefully acknowledge financial support from the National Institutes of Health (R01 AI-43346) and from the School of Pharmacy at the University of Wisconsin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diezi, T.A., Kwon, G. Amphotericin B/Sterol Co-loaded PEG-Phospholipid Micelles: Effects of Sterols on Aggregation State and Hemolytic Activity of Amphotericin B. Pharm Res 29, 1737–1744 (2012). https://doi.org/10.1007/s11095-011-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0626-z

KEY WORDS

Navigation