Skip to main content
Log in

Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To achieve sustained peptide delivery via mesoporous silicon (PSi) microparticles and to evaluate the effects of different surface chemistries on peptide YY3-36 (PYY3-36) delivery.

Methods

PYY3-36 was loaded into thermally oxidized (TOPSi), thermally hydrocarbonized (THCPSi) and undecylenic acid treated THCPSi (UnTHCPSi) microparticles with comparable porous properties. In vitro, PYY3-36 release was investigated by centrifuge. In vivo, PYY3-36 plasma concentrations were analyzed after delivery in microparticles or solution.

Results

Achieved loading degrees were high (12.2 – 16.0% w/w). PYY3-36 release was sustained from all microparticles; order of PYY3-36 release was TOPSi > THCPSi > UnTHCPSi both in vitro and in vivo. In mice, PSi microparticles achieved sustained PYY3-36 release over 4 days, whereas PYY3-36 solution was eliminated in 12 h. In vitro, only 27.7, 14.5 and 6.2% of loaded PYY3-36 was released from TOPSi, THCPSi and UnTHCPSi, respectively. Absolute PYY3-36 bioavailabilities were 98, 13, 9 and 38% when delivered subcutaneously in TOPSi, THCPSi, UnTHCPSi and solution, respectively. The results clearly demonstrate improved bioavailability of PYY3-36 via TOPSi and the importance of surface chemistry of PSi on peptide release.

Conclusions

PSi represents a promising sustained and tailorable release system for PYY3-36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PSi:

porous silicon

THCPSi:

thermally hydrocarbonized porous silicon

TOPSi:

thermally oxidized porous silicon

UnTHCPSi:

undecylenic acid treated thermally hydrocarbonized porous silicon

REFERENCES

  1. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2008;97:632–53.

    Article  PubMed  CAS  Google Scholar 

  2. Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Mäkilä E, Laaksonen T, et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano. 2010;4:3023–32.

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, et al. In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm. 2010;402:190–7.

    Article  PubMed  CAS  Google Scholar 

  4. Limnell T, Riikonen J, Salonen J, Kaukonen AM, Laitinen L, Hirvonen J, et al. Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles. Int J Pharm. 2007;343:141–7.

    Article  PubMed  CAS  Google Scholar 

  5. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108:362–74.

    Article  PubMed  CAS  Google Scholar 

  6. Karlsson LM, Tengvall P, Lundström I, Arwin H. Penetration and loading of human serum albumin in porous silicon layers with different pore sizes and thicknesses. J Colloid Interface Sci. 2003;266:40–7.

    Article  PubMed  CAS  Google Scholar 

  7. Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Kempson I, Peddie F, Barnett C. Peptide and protein loading into porous silicon wafers. Phys Stat Sol (a). 2008;205:311–5.

    Article  CAS  Google Scholar 

  8. Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Skinner W, Peddie F, Barnett C. Loading and release of a model protein from porous silicon powders. Phys Stat Sol (a). 2007;204:3361–6.

    Article  CAS  Google Scholar 

  9. Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA. Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm. 2010;7:227–36.

    Article  PubMed  CAS  Google Scholar 

  10. Wu EC, Park JH, Park J, Segal E, Cunin F, Sailor MJ. Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano. 2008;2:2401–9.

    Article  PubMed  CAS  Google Scholar 

  11. Foraker AB, Walczak RJ, Cohen MH, Boiarski TA, Grove CF, Swaan PW. Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res. 2003;20:110–6.

    Article  PubMed  CAS  Google Scholar 

  12. De Rosa E, Chiappini C, Fan D, Liu X, Ferrari M, Tasciotti E. Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system. Pharm Res. 2011;28:1520–30.

    Article  PubMed  Google Scholar 

  13. Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto VP, Salonen J, et al. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release. 2009;137:166–70.

    Article  PubMed  Google Scholar 

  14. Kilpeläinen M, Mönkäre J, Vlasova MA, Riikonen J, Lehto VP, Salonen J, et al. Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. Eur J Pharm Biopharm. 2011;77:20–5.

    Article  PubMed  Google Scholar 

  15. Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4:298–306.

    Article  PubMed  CAS  Google Scholar 

  16. Witschi C, Doelker E. Peptide degradation during preparation and in vitro release testing of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) microparticles. Int J Pharm. 1998;171:1–18.

    Article  CAS  Google Scholar 

  17. Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. J Control Release. 2010;146:241–60.

    Article  PubMed  CAS  Google Scholar 

  18. Salonen J, Björkqvist M, Laine E, Niinistö L. Stabilization of porous silicon surface by thermal decomposition of acetylene. App Surf Science. 2004;225:389–94.

    Article  CAS  Google Scholar 

  19. Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008;149:70–8.

    Article  PubMed  CAS  Google Scholar 

  20. Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980;285:417–8.

    Article  PubMed  CAS  Google Scholar 

  21. Nonaka N, Shioda S, Niehoff ML, Banks WA. Characterization of blood–brain barrier permeability to PYY3-36 in the mouse. J Pharmacol Exp Ther. 2003;306:948–53.

    Article  PubMed  CAS  Google Scholar 

  22. Koegler FH, Enriori PJ, Billes SK, Takahashi DL, Martin MS, Clark RL, et al. Peptide YY(3–36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes. 2005;54:3198–204.

    Article  PubMed  CAS  Google Scholar 

  23. Beglinger C, Poller B, Arbit E, Ganzoni C, Gass S, Gomez-Orellana I, et al. Pharmacokinetics and pharmacodynamic effects of oral GLP-1 and PYY3-36: a proof-of-concept study in healthy subjects. Clin Pharmacol Ther. 2008;84:468–74.

    Article  PubMed  CAS  Google Scholar 

  24. Chelikani PK, Haver AC, Reeve Jr JR, Keire DA, Reidelberger RD. Daily, intermittent intravenous infusion of peptide YY(3–36) reduces daily food intake and adiposity in rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R298–305.

    Article  PubMed  CAS  Google Scholar 

  25. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  PubMed  CAS  Google Scholar 

  26. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.

    Article  PubMed  CAS  Google Scholar 

  27. Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res. 2005;1043:139–44.

    Article  PubMed  CAS  Google Scholar 

  28. van den Hoek AM, Heijboer AC, Voshol PJ, Havekes LM, Romijn JA, Corssmit EP, et al. Chronic PYY3-36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL6 mice. Am J Physiol Endocrinol Metab. 2007;292:E238–45.

    Article  PubMed  Google Scholar 

  29. Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587:19–25.

    Article  PubMed  CAS  Google Scholar 

  30. Chandarana K, Batterham R, Peptide YY. Curr Opin Endocrinol Diabetes Obes. 2008;15:65–72.

    Article  PubMed  CAS  Google Scholar 

  31. Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol. 2010;316:120–8.

    Article  PubMed  CAS  Google Scholar 

  32. Shechter Y, Tsubery H, Mironchik M, Rubinstein M, Fridkin M. Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice. FEBS Lett. 2005;579:2439–44.

    Article  PubMed  CAS  Google Scholar 

  33. Gantz I, Erondu N, Mallick M, Musser B, Krishna R, Tanaka WK, et al. Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults. J Clin Endocrinol Metab. 2007;92:1754–7.

    Article  PubMed  CAS  Google Scholar 

  34. A Study of Nasal PYY3-36 and Placebo for Weight Loss in Obese Subjects. ClinicalTrials.Gov. 2011 June 10. Available from: http://clinicaltrials.gov/ct2/show/NCT00537420).

  35. Akers JM, DeFelippis RM. Peptides. In: Frokjaer S, Hovgaard L, editors. Pharmaceutical formulation development of peptides and proteins. London: CRC; 1999. p. 145–77.

    Google Scholar 

  36. Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ. Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc. 2002;149:H59–63.

    Article  CAS  Google Scholar 

  37. Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  38. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  CAS  Google Scholar 

  39. Lehto VP, Vähä-Heikkilä K, Paski J, Salonen J. Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles. J Therm Anal Calorimetry. 2005;80:393–7.

    Article  CAS  Google Scholar 

  40. Arrondo JL, Goni FM. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol. 1999;72:367–405.

    Article  PubMed  CAS  Google Scholar 

  41. Boxenbaum H. Pharmacokinetics tricks and traps: flip-flop models. J Pharm Pharm Sci. 1998;1:90–1.

    PubMed  CAS  Google Scholar 

  42. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8:331–6.

    Article  PubMed  CAS  Google Scholar 

  43. Leoni L, Boiarski A, Desai TA. Characterization of nanoporous membranes for immunoisolation: Diffusion properties and tissue effects. Biomed Microdevices. 2002;4:131–9.

    Article  Google Scholar 

  44. Hegefeld WA, Kuczera K, Jas GS. Structural dynamics of neuropeptide hPYY. Biopolymers. 2011;95:487–502.

    Article  PubMed  CAS  Google Scholar 

  45. Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, et al. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res Part A. 2010;94A:1236–43.

    CAS  Google Scholar 

  46. Jarvis KL, Barnes TJ, Prestidge CA. Thermal oxidation for controlling protein interactions with porous silicon. Langmuir: the ACS journal of surfaces and colloids. 2010;26:14316–22.

    Article  CAS  Google Scholar 

  47. Felsovalyi F, Mangiagalli P, Bureau C, Kumar SK, Banta S (2011) Reversibility of the adsorption of lysozyme on silica. Langmuir; doi:10.1021/la202585r.

  48. Kaukonen AM, Laitinen L, Salonen J, Tuura J, Heikkilä T, Limnell T, et al. Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. Eur J Pharm Biopharm. 2007;66:348–56.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This study was financially supported by Finnish Cultural Foundation (MK), Orion Farmos Research Foundation (MK), Graduate School of Pharmaceutical Research (JM), Academy of Finland – PEPBI consortium (#117906, #118002, #217547) and the strategic funding of the University of Eastern Finland (NAMBER consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miia Kovalainen.

Additional information

Miia Kovalainen and Juha Mönkäre share equal contribution.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary data S1

TG measurements of thermally oxidized PSi (TOPSi), hydrocarbonized PSi (THCPSi) and undecylenic acid treated thermally hydrocarbonized PSi (UnTHCPSi) and PYY3-36 loaded TOPSi. Reduction in weight correlates with the decomposed surface moieties desorbing from the samples. (JPEG 71 kb)

High Resolution Image (TIFF 8260 kb)

Supplementary data S2

FTIR spectra of TOPSi, THCPSi, UnTHCPSi shown in Supplementary data S1. Spectra have been shifted to clarify the figure. (JPEG 88 kb)

High Resolution Image (TIFF 8939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalainen, M., Mönkäre, J., Mäkilä, E. et al. Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release. Pharm Res 29, 837–846 (2012). https://doi.org/10.1007/s11095-011-0611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0611-6

KEY WORDS

Navigation