Skip to main content
Log in

Low-Molecular-Weight Methylcellulose-Based Thermo-reversible Gel/Pluronic Micelle Combination System for Local and Sustained Docetaxel Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop low-molecular-weight methylcellulose (LMw MC)-based gel/Pluronic F127 micelle combination system for local and sustained delivery of docetaxel (DTX).

Methods

LMw MC and Pluronic F127 were used to formulate an injectable thermo-reversible gel/micelle combination system containing DTX. The DTX-loaded combination system was characterized and its therapeutic efficacy evaluated in a subcutaneous tumor model.

Results

Mixtures of LMw MC, AS, and Pluronic F127 formed gel at ~15–40°C depending on AS concentration. The combination system released DTX for >30 days with a biphasic and sustained release pattern, and DTX stability was maintained during release. The combination system significantly enhanced anti-cancer effects of DTX and prolonged survival of the model mouse in comparison with free DTX.

Conclusions

The LMw MC gel/Pluronic F127 micelle combination system constitutes a promising tool for reducing tumor size and eradicating remaining tumor cells before and after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388(6645):860–2.

    Article  PubMed  CAS  Google Scholar 

  2. Zahedi P, De Souza R, Piquette-Miller M, Allen C. Chitosan-phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity. Int J Pharm. 2009;377(1–2):76–84.

    Article  PubMed  CAS  Google Scholar 

  3. Vukelja S, Anthony S, Arseneau J, Berman B, Casey Cunningham C, Nemunaitis J, et al. Phase 1 study of escalating-dose OncoGel (R)(ReGel (R)/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anti-cancer Drugs. 2007;18(3):283–89.

    Article  PubMed  CAS  Google Scholar 

  4. Cho K, Wang X, Nie S, Chen Z, Shin D. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–16.

    Article  PubMed  CAS  Google Scholar 

  5. Jackson JK, Zhang X, Llewellen S, Hunter WL, Burt HM. The characterization of novel polymeric paste formulations for intratumoral delivery. Int J Pharm. 2004;270(1–2):185–98.

    Article  PubMed  CAS  Google Scholar 

  6. Nsereko S, Amiji M. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials. 2002;23(13):2723–31.

    Article  PubMed  CAS  Google Scholar 

  7. Ranganath SH, Wang C-H. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 2008;29(20):2996–3003.

    Article  PubMed  CAS  Google Scholar 

  8. Shim WS, Kim J-H, Kim K, Kim Y-S, Park R-W, Kim I-S, et al. pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. Int J Pharm. 2007;331(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lim Soo P, Cho J, Grant J, Ho E, Piquette-Miller M, Allen C. Drug release mechanism of paclitaxel from a chitosan-lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm. 2008;69(1):149–57.

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Wang J, Zhang X, Lu W, Zhang Q. A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J Control Release. 2009;135(2):175–82.

    Article  PubMed  CAS  Google Scholar 

  11. Heller J. Patient-friendly bioerodible drug delivery systems. J Control Release. 2009;133(2):88–9.

    Article  PubMed  CAS  Google Scholar 

  12. Klouda L, Mikos A. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34–45.

    Article  PubMed  CAS  Google Scholar 

  13. Jin K-M, Kim Y-H. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release. 2008;127(3):249–56.

    Article  PubMed  CAS  Google Scholar 

  14. Won Y-W, Kim J-K, Cha M-J, Hwang K-C, Choi D, Kim Y-H. Prolongation and enhancement of the anti-apoptotic effects of PTD-Hsp27 fusion proteins using an injectable thermo-reversible gel in a rat myocardial infarction model. J Control Release. 2010;144(2):181–89.

    Article  PubMed  CAS  Google Scholar 

  15. Chen M-C, Tsai H-W, Liu C-T, Peng S-F, Lai W-Y, Chen S-J, et al. A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials. 2009;30(11):2102–11.

    Article  PubMed  CAS  Google Scholar 

  16. Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61(19):2549–59.

    Article  PubMed  CAS  Google Scholar 

  17. Gou M, Li X, Dai M, Gong C, Wang X, Xie Y, et al. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008;359(1–2):228–33.

    Article  PubMed  CAS  Google Scholar 

  18. Jeong B, Kim S, Bae Y. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54(1):37–51.

    Article  PubMed  CAS  Google Scholar 

  19. Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels–review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.

    Article  PubMed  Google Scholar 

  20. Sezgin Z, Yüksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64(3):261–68.

    Article  PubMed  CAS  Google Scholar 

  21. Li L, Lim LH, Wang Q, Jiang SP. Thermoreversible micellization and gelation of a blend of pluronic polymers. Polymer. 2008;49(7):1952–60.

    Article  CAS  Google Scholar 

  22. Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66(3):303–17.

    Article  PubMed  CAS  Google Scholar 

  23. Engels F, Mathot R, Verweij J. Alternative drug formulations of docetaxel: a review. Anti-cancer Drugs. 2007;18(2):95–103.

    Article  PubMed  CAS  Google Scholar 

  24. Yang HN, Park JS, Na K, Woo DG, Kwon YD, Park K-H. The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials. 2009;30(31):6374–85.

    Article  PubMed  CAS  Google Scholar 

  25. Rao BM, Chakraborty A, Srinivasu MK, Devi ML, Kumar PR, Chandrasekhar KB, et al. A stability-indicating HPLC assay method for docetaxel. J Pharm Biomed Anal. 2006;41(2):676–81.

    Article  PubMed  CAS  Google Scholar 

  26. Andersen A, Warren D, Brunsvig P, Aamdal S, Kristensen G, Olsen H. High sensitivity assays for docetaxel and paclitaxel in plasma using solid-phase extraction and high-performance liquid chromatography with UV detection. BMC Clin Pharmacol. 2006;6(1):1–10.

    Article  Google Scholar 

  27. Liu J, Zeng F, Allen C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J Control Release. 2005;103(2):481–97.

    Article  PubMed  CAS  Google Scholar 

  28. Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci. 2007;32(7):669–97.

    Article  CAS  Google Scholar 

  29. Kim SY, Kim JH, Kim D, An JH, Lee DS, Kim SC. Drug-releasing kinetics of MPEG/PLLA block copolymer micelles with different PLLA block lengths. J Appl Polym Sci. 2001;82(10):2599–605.

    Article  CAS  Google Scholar 

  30. Jeong Y-I, Cheon J-B, Kim S-H, Nah J-W, Lee Y-M, Sung Y-K, et al. Clonazepam release from core-shell type nanoparticles in vitro. J Control Release. 1998;51(2–3):169–78.

    Article  PubMed  CAS  Google Scholar 

  31. Adden R, Melander C, Brinkmalm G, Gorton L, Mischnick P. New approaches to the analysis of enzymatically hydrolyzed methyl cellulose. Part 1. Investigation of the influence of structural parameters on the extent of degradation. Biomacromolecules. 2006;7(5):1399–409.

    Article  PubMed  CAS  Google Scholar 

  32. Melander C, Adden R, Brinkmalm G, Gorton L, Mischnick P. New approaches to the analysis of enzymatically hydrolyzed methyl cellulose. Part 2. Comparison of various enzyme preparations. Biomacromolecules. 2006;7(5):1410–21.

    Article  PubMed  CAS  Google Scholar 

  33. Hwang H-Y, Kim I-S, Kwon IC, Kim Y-H. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  34. Won Y-W, Yoon S-M, Sonn CH, Lee K-M, Kim Y-H. Nano self-assembly of recombinant human gelatin conjugated with a-tocopheryl succinate for Hsp90 inhibitor, 17AAG, delivery. ACS Nano. 2011;5(5):3839–48.

    Article  PubMed  CAS  Google Scholar 

  35. Pasquier E, Honoré S, Braguer D. Microtubule-targeting agents in angiogenesis: Where do we stand? Drug Resist Update. 9(1–2):74–86.

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This research was partially supported by grants from the Korea Science and Engineering Foundation (20110017022), WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R332010000100360), Yang Young Foundation and Seoul R&BD program (ST100071M093211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hee Kim.

Additional information

Jang Kyung Kim and Young-Wook Won contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Won, YW., Lim, K.S. et al. Low-Molecular-Weight Methylcellulose-Based Thermo-reversible Gel/Pluronic Micelle Combination System for Local and Sustained Docetaxel Delivery. Pharm Res 29, 525–534 (2012). https://doi.org/10.1007/s11095-011-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0581-8

KEY WORDS

Navigation