Skip to main content

Advertisement

Log in

The Effects of PVP(Fe(III)) Catalyst on Polymer Molecular Weight and Gene Delivery Via Biodegradable Cross-Linked Polyethylenimine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Crosslinked, degradable derivatives of low-molecular-weight polyethylenimine (PEI) are relatively efficient and non-cytotoxic gene delivery agents. To further investigate these promising materials, a new synthetic approach was developed using a poly(4-vinylpyridine)-supported Fe(III) catalyst (PVP(Fe(III))) that provides more facile synthesis and enhanced control of polymer molecular weight.

Methods

Biodegradable polymers (D.PEI) comprising 800-Da PEI crosslinked with 1,6-hexanediol diacrylate and exhibiting molecular weights of 1.2, 6.2, and 48 kDa were synthesized utilizing the PVP(Fe(III)) catalyst. D.PEI/DNA polyplexes were characterized using gel retardation, ethidium bromide exclusion, heparan sulfate displacement, and dynamic light scattering. In vitro transfection, cellular uptake, and cytotoxicity of the polyplexes were tested in human cervical cancer cells (HeLa) and human breast cancer cells (MDA-MB-231).

Results

D.PEIs tightly complexed plasmid DNA and formed 320- to 440-nm diameter polyplexes, similar to those comprising non-degradable, 25-kDa, branched PEI. D.PEI polyplexes mediated 2- to 5-fold increased gene delivery efficacy compared to 25-kDa PEI and exhibited 20% lower cytotoxicity in HeLa and no toxicity in MDA-MB-231. In addition, 2- to 7-fold improved cellular uptake of DNA was achieved with D.PEI polyplexes.

Conclusions

PVP(Fe(III)) catalyst provided a more controlled synthesis of D.PEIs, and these materials demonstrated improved in vitro transfection efficacy and reduced cytotoxicity .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui LC, et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell. 1990;62(6):1227–33.

    Article  PubMed  CAS  Google Scholar 

  2. Kay MA, Rothenberg S, Landen CN, Bellinger DA, Leland F, Toman C, et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science. 1993;262(5130):117–9.

    Article  PubMed  CAS  Google Scholar 

  3. Check E. Gene therapy put on hold as third child develops cancer. Nature. 2005;433:561.

    Google Scholar 

  4. Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999;286(5448):2244–5.

    Article  PubMed  CAS  Google Scholar 

  5. Luo D, Saltzman M. Synthetic DNA delivery systems. Nat Biotechnol. 2000;18:33–7.

    Article  PubMed  CAS  Google Scholar 

  6. Park TG, Jeong HJ, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58(4):467–86.

    Article  PubMed  CAS  Google Scholar 

  7. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.

    Article  PubMed  CAS  Google Scholar 

  8. Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 2006;27(29):5143–50.

    Article  PubMed  CAS  Google Scholar 

  9. Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6(4):595–605.

    Article  PubMed  CAS  Google Scholar 

  10. Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate Chem. 2001;12(6):989–94.

    Article  CAS  Google Scholar 

  11. Kim YH, Park JH, Lee M, Kim YH, Park TG, Kim SW. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103(1):209–19.

    Article  PubMed  CAS  Google Scholar 

  12. McKenzie DL, Smiley E, Kwok KY, Rice KG. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjugate Chem. 2000;11(6):901–9.

    Article  CAS  Google Scholar 

  13. Wong K, Sun G, Zhang X, Dai H, Liu Y, He C, et al. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver adminstration in vivo. Bioconjugate Chem. 2006;17(1):152–8.

    Article  CAS  Google Scholar 

  14. Lynn DM, Anderson DG, Putnam D, Langer R. Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J Am Chem Soc. 2001;123(33):8155–6.

    Article  PubMed  CAS  Google Scholar 

  15. Forrest ML, Koerber JT, Pack DW. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjugate Chem. 2003;14(5):934–40.

    Article  CAS  Google Scholar 

  16. Kim EM, Jeong HJ, Park IK, Cho CS, Bom HS, Kim CG. Monitoring the effect of PEGylation on polyethylenimine in vivo using nuclear imaging technique. Nucl Med Biol. 2004;31(6):781–4.

    Article  PubMed  CAS  Google Scholar 

  17. Chari MA, Syamasundar K. Polymer-supported ferric chloride as a heterogeneous catalyst for chemoselective deprotection of acetonides. Synthesis. 2005;5:708–10.

    Article  Google Scholar 

  18. von Harpe A, Petersen H, Li Y, Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release. 2000;69(2):309–22.

    Article  Google Scholar 

  19. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11(6):990–5.

    Article  PubMed  CAS  Google Scholar 

  20. Zhong Z, Song Y, Engbersen JFJ, Lok MC, Hennink WE, Feijen J. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J Control Release. 2005;109(1–3):317–29.

    Article  PubMed  CAS  Google Scholar 

  21. Kichler A, Behr JP, Erbacher P. Polyethylenimines: a family of potent polymers for nucleic acid delivery. In: Huang L, Hung MC, Wagner E, editors. Nonviral vectors for gene therapy. 1st ed. San Diego: Academic Press, Inc.; 1999. p. 191–204.

    Chapter  Google Scholar 

  22. Ziello JE, Huang Y, Jovin IS. Cellular endocytosis and gene delivery. Mol Med. 2010;16(5–6):222–9.

    PubMed  CAS  Google Scholar 

  23. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. PNAS. 1996;93(22):12349–54.

    Article  PubMed  CAS  Google Scholar 

  24. Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, et al. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjugate Chem. 2005;16(4):785–92.

    Article  CAS  Google Scholar 

  25. Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM. Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res. 2005;22(3):373–80.

    Article  PubMed  CAS  Google Scholar 

  26. Dong W, Li S, Jin G, Sun Q, Ma D, Hua Z. Efficient gene transfection into mammalian cells mediated by cross-linked polyethylenimine. Int J Mol Sci. 2007;8(2):81–102.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by the National Institutes of Health (GM085222). Flow cytometry was performed at the Flow Cytometry Facility of the Roy J. Carver Biotechnology Center at the University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Pack.

ELECTRONIC SUPPLEMENTARY MATERIALS

Below is the link to the electronic supplementary material.

Supplementary Figure 1

NMR spectra of unmodified PEIs and D.PEIs. 1) Unmodified 800 Da PEI, 2) unmodified 25 kDa PEI, 3) D.PEI-48, 4) D.PEI-6.2, and 5) D.PEI-1.2. D.PEI spectrum peak labels: (a) δ = 4.1 ppm, -COOCH 2 , ester linker; (b) δ = 3.5–3.6 ppm, -HOCH 2 , hydrolyzed ester linker; (c) δ = 3.34ppm, methanol residual; (d) δ = 2.47–3.3 ppm, CH 2 CH 2 N, PEI ethylenes; (e) δ = 2.33–2.47 ppm, CH2CH2NHCH2CH 2 COOCH2, ester linker; (f) δ = 1.40–1.60 ppm, -COOCH 2 CH 2 , ester linker; and (g) δ = 1.25–1.40 ppm, -COOCH2CH2CH 2 , ester linker. (DOC 167 kb)

Supplementary Table I

Polymer Concentrations, Viscosity Measurements, Reduced Viscosities, and Molecular Weights of Biodegradable PEI. (DOC 37.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shum, V.W.T., Gabrielson, N.P., Forrest, M.L. et al. The Effects of PVP(Fe(III)) Catalyst on Polymer Molecular Weight and Gene Delivery Via Biodegradable Cross-Linked Polyethylenimine. Pharm Res 29, 500–510 (2012). https://doi.org/10.1007/s11095-011-0576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0576-5

KEY WORDS

Navigation