Skip to main content


Log in

Regulation of miR-19 to Breast Cancer Chemoresistance Through Targeting PTEN

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Editorial Expression of Concern to this article was published on 28 October 2022

This article has been updated



To explore whether miR-19 is involved in the regulation of multidrug resistance (MDR), one of the main causes of breast cancer mortality, and modulates sensitivity of tumor cells to chemotherapeutic agents.


We analyzed miRNA expression levels in three MDR cell lines in comparison with their parent cell line, MCF-7, using a miRNA microarray. We investigated whether inhibitor of miR-19 sensitized MDR cells to chemotherapeutic agents in vitro and in vivo.


MiR-19 was overexpressed in all three MDR cell lines compared to their parental cell line, MCF-7. Expression levels of miR-19 in MDR cells were inversely consistent with those of PTEN. Inhibitor of miR-19a restored sensitivity of MDR cells to cytotoxic agents; administration of LNA-antimiR-19a, a chemo-modified miR-19a inhibitor, sensitized MDR cells to chemotherapeutic agents in vivo.


Our findings demonstrate, for the first time, involvement of miR-19 in multidrug resistance through modulation of PTEN and suggest that miR-19 may be a potential target for preventing and reversing MDR in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history



breast cancer resistance protein


locked nucleic acid


multidrug resistance


multidrug resistance 1




multidrug resistance-associated protein 1


phosphatase and tensin homolog


reverse transcription polymerase chain reaction.


  1. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    Article  PubMed  CAS  Google Scholar 

  2. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.

    Article  PubMed  CAS  Google Scholar 

  3. Lee Jr JT, Steelman LS, McCubrey JA. Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. 2004;64(22):8397–404.

    Article  PubMed  CAS  Google Scholar 

  4. Filipits M, Pohl G, Rudas M, Dietze O, Lax S, Grill R, et al. Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer: the Austrian Breast and Colorectal Cancer Study Group. J Clin Oncol. 2005;23(6):1161–8.

    Article  PubMed  CAS  Google Scholar 

  5. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22(47):7340–58.

    Article  PubMed  Google Scholar 

  6. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122(1):6–7.

    Article  PubMed  CAS  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  8. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    Article  PubMed  CAS  Google Scholar 

  9. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  PubMed  CAS  Google Scholar 

  10. Slack FJ, Weidhaas JB. MicroRNAs as a potential magic bullet in cancer. Future Oncol. 2006;2(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  11. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 2005;33(17):5394–403.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 2008;76(5):582–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9.

    Article  PubMed  CAS  Google Scholar 

  15. Pan YZ, Morris MEYuAM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75(6):1374–9.

    Article  PubMed  CAS  Google Scholar 

  16. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79(6):817–24.

    Article  PubMed  CAS  Google Scholar 

  17. Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res. 1994;54(1):152–8.

    PubMed  CAS  Google Scholar 

  18. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 2004;64(12):4302–8.

    Article  PubMed  CAS  Google Scholar 

  19. Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359(3):716–22.

    Article  PubMed  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90(2):144–55.

    Article  PubMed  CAS  Google Scholar 

  22. Kim JS, Peng X, De PK, Geahlen RL, Durden DL. PTEN controls immunoreceptor (immunoreceptor tyrosine-based activation motif) signaling and the activation of Rac. Blood. 2002;99(2):694–7.

    Article  PubMed  CAS  Google Scholar 

  23. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  PubMed  CAS  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  25. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8(3):187–98.

    Article  PubMed  CAS  Google Scholar 

  26. Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, et al. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer. 2005;117(3):376–80.

    Article  PubMed  CAS  Google Scholar 

  27. Choi BH, Kim CG, Lim Y, Shin SY, Lee YH. Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett. 2008;259(1):111–8.

    Article  PubMed  CAS  Google Scholar 

  28. Takada T, Suzuki H, Gotoh Y, Sugiyama Y. Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos. 2005;33(7):905–9.

    Article  PubMed  CAS  Google Scholar 

  29. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803.

    Article  PubMed  CAS  Google Scholar 

  30. Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37(Pt 4):918–25.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18(3):350–9.

    Article  PubMed  CAS  Google Scholar 

  32. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 2009;23(24):2839–49.

    Article  PubMed  CAS  Google Scholar 

  33. Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ, et al. The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res. 2010;70(21):8547–57.

    Article  PubMed  CAS  Google Scholar 

  34. Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 2006;34(8):2294–304.

    Article  PubMed  CAS  Google Scholar 

  35. Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006;372:137–41.

    Article  PubMed  CAS  Google Scholar 

  36. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9.

    Article  PubMed  CAS  Google Scholar 

  37. Petri A, Lindow M, Kauppinen S. MicroRNA silencing in primates: towards development of novel therapeutics. Cancer Res. 2009;69(2):393–5.

    Article  PubMed  CAS  Google Scholar 

  38. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201.

    Article  PubMed  CAS  Google Scholar 

  39. Brown DA, Kang SH, Gryaznov SM, DeDionisio L, Heidenreich O, Sullivan S, et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem. 1994;269(43):26801–5.

    PubMed  CAS  Google Scholar 

  40. Graham MJ, Crooke ST, Monteith DK, Cooper SR, Lemonidis KM, Stecker KK, et al. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J Pharmacol Exp Ther. 1998;286(1):447–58.

    PubMed  CAS  Google Scholar 

Download references


This study was financially supported by the Department of Defense Breast Cancer Program Concept Award (BC052118) to ZL as well as a Research Grant from NIH NCI (1R01CA109366) to HS. We thank Dr. Susan E. Bates from NCI/NIH, Bethesda, MD for her valuable advice. We acknowledge James Xia and Robert Craig Castellino for technical help. The authors thank Ms. Jessica Paulishen for proof-reading.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Zhongxing Liang or Hyunsuk Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Li, Y., Huang, K. et al. Regulation of miR-19 to Breast Cancer Chemoresistance Through Targeting PTEN. Pharm Res 28, 3091–3100 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: