Skip to main content
Log in

Controlled Release Systems Containing Solid Dispersions: Strategies and Mechanisms

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

AAS:

atomic absorption spectroscopy

AES:

atomic emission spectroscopy

CLSM:

confocal laser scanning microscopy

CR:

controlled release

CR-SD:

controlled-release solid dispersion

DSC:

differential scanning calorimetry

EC:

ethylcellulose

EPRI:

electron paramagnetic resonance imaging

FTIR:

fourier transformed infrared spectroscopy

HPMC:

hydroxypropyl methylcellulose

HEC:

hydroxyethyl cellulose

HPC:

hydroxypropyl cellulose

ICP spectrometry:

inductively coupled plasma spectrometry

IR-SD:

immediate-release solid dispersion

MRI:

magnetic resonance imaging

NIR imaging:

near infrared imaging

NMR:

nuclear magnetic resonance

NSESD:

non-self-emulsifying solid dispersion

PCS:

photon correlation spectroscopy

PEG:

polyethylene glycol

PEO:

polyethylene oxide

PVP:

polyvinyl pyrrolidone

pHM :

microenvironmental pH

PXRD:

powder X-ray diffraction

SD:

solid dispersion

SEM:

scanning electron microscopy

SESD:

self-emulsifying solid dispersion

TEM:

transmission electron microscopy

Tg :

glass transition temperature

TMDSC:

temperature modulated differential scanning calorimetry

REFERENCES

  1. Haan PD, Lerk CF. Oral controlled release dosage forms. A review. Pharm World Sci. 1984;6(2):57–67.

    Google Scholar 

  2. Salsa T, Veiga F, Pina ME. Oral controlled-release dosage forms. I. cellulose ether polymers in hydrophilic matrices. Drug Dev Ind Pharm. 1997;23(9):929–38.

    Article  CAS  Google Scholar 

  3. Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ibuki R, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release. 2006;112(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  4. Sansom LN. Oral extended-release products. Aust Prescr. 1999;22:88–90.

    Google Scholar 

  5. Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ohike A, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine. J Control Release. 2005;108(2–3):386–95.

    Article  PubMed  CAS  Google Scholar 

  6. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersions. J Pharm Sci. 1971;60(9):1281–302.

    Article  PubMed  CAS  Google Scholar 

  7. Ford JL. The current status of solid dispersions. Pharm Acta Helv. 1986;61(3):69–88.

    PubMed  CAS  Google Scholar 

  8. Craig DQM. Polyethylene glycols and drug release. Drug Dev Ind Pharm. 1990;16(17):2501–26.

    Article  CAS  Google Scholar 

  9. Serajuddin ATM. Solid dispersions of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  PubMed  CAS  Google Scholar 

  10. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

    Article  PubMed  CAS  Google Scholar 

  11. Ozeki T, Yuasa H, Kanaya Y. Application of the solid dispersion method to the controlled release of medicine: IX. Difference in the release of flurbiprofen from solid dispersions with poly(ethylene oxide) and hydroxypropylcellulose and the interaction between medicine and polymers. Int J Pharm. 1997;155(2):209–17.

    Article  CAS  Google Scholar 

  12. Yang M, Cui F, You B, Wang L, Yue P, Kawashima Y. A novel pH-dependent gradient-release delivery system for nitrendipine II. Investigations of the factors affecting the release behaviors of the system. Int J Pharm. 2004;286(1–2):99–109.

    Article  PubMed  CAS  Google Scholar 

  13. Kerč J. Three-phase pharmaceutical form-threeform-with controlled release of amorphous active ingredient for once-daily administration. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology, drugs and the pharmaceutical sciences vol. 126. New York: Marcel Dekker; 2003. p. 115–23.

    Google Scholar 

  14. Tran TT-D, Tran PH-L, Lim J-S, Park J-B, Choi S-K, Lee B-J. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Therapeutic Delivery. 2010;1(1):51–62.

    Article  CAS  Google Scholar 

  15. Habib MJ. Pharmaceutical solid dispersion technology. Lancaster: Technomic Pub. Co.; 2001.

    Google Scholar 

  16. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  PubMed  CAS  Google Scholar 

  17. Goldberg AH, Gibaldi M, Kanig JL, Myersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs IV: chloramphenicol-urea system. J Pharm Sci. 1966;55(6):581–3.

    Article  PubMed  CAS  Google Scholar 

  18. Hong JY, Kim JK, Song YK, Park JS, Kim CK. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J Control Release. 2006;110(2):332–8.

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez-Tarrio M, Yañez F, Immesoete K, Alvarez-Lorenzo C, Concheiro A. Pluronic and tetronic copolymers with polyglycolyzed oils as self-emulsifying drug delivery systems. AAPS PharmSciTech. 2008;9(2):471–9.

    Article  PubMed  CAS  Google Scholar 

  20. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12.

    Article  PubMed  CAS  Google Scholar 

  21. Corrigan OI, Healy AM. Surfactants in pharmaceutical products and systems. In: Encyclopedia of pharmaceutical technology. New York: Marcel Dekker Inc.; 2002(3): pp. 2639–2653.

  22. Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    PubMed  CAS  Google Scholar 

  23. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.

    Google Scholar 

  24. Heo M-Y, Piao Z-Z, Kim T-W, Cao Q-R, Kim A, Lee B-J. Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch Pharm Res. 2005;28(5):604–11.

    Article  PubMed  CAS  Google Scholar 

  25. Alden M, Tegenfeldt J, Saers ES. Structures formed by interactions in solid dispersions of the system polyethylene glycol-griseofulvin with charged and noncharged surfactants added. Int J Pharm. 1993;94(1–3):31–8.

    Article  CAS  Google Scholar 

  26. Cao Q-R, Kim T-W, Choi C-Y, Kwon K-A, Lee B-J. Preparation and dissolution of PVP-based solid dispersion capsules containing solubilizers. J Korean Pharm Sci. 2003;33(1):7–14.

    CAS  Google Scholar 

  27. Joshi HN, Tejwani RW, Davidovich M, Sahasrabudhe VP, Jemal M, Bathala MS, et al. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int J Pharm. 2004;269(1):251–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kim T-W, Choi C-Y, Cao Q-R, Kwon K-A, Lee B-J. Dissolution profiles of solid dispersions containing poorly water-soluble drugs and solubilizing compositions. J Korean Pharm Sci. 2002;32(3):191–7.

    CAS  Google Scholar 

  29. Morris KR, Knipp GT, Serajuddin ATM. Structural properties of polyethylene glycol-polysorbate 80 mixture, a solid dispersion vehicle. J Pharm Sci. 1992;81(12):1185–8.

    Article  PubMed  CAS  Google Scholar 

  30. Sheen PC, Khetarpal VK, Cariola CM, Rowlings CE. Formulation studies of a poorly water-soluble drug in solid dispersions to improve bioavailability. Int J Pharm. 1995;118(2):221–7.

    Article  CAS  Google Scholar 

  31. Emara LH, Badr RM, Elbary AA. Improving the dissolution and bioavailability of nifedipine using solid dispersions and solubilizers. Drug Dev Ind Pharm. 2002;28(7):795–807.

    Article  PubMed  CAS  Google Scholar 

  32. Tran PH-L, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release. 2008;129(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  33. Tran TT-D, Tran PH-L, Lee B-J. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm. 2009;72(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  34. Tran TT-D, Tran PH-L, Choi H-G, Han H-K, Lee B-J. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm. 2010;384(1–2):60–6.

    Article  PubMed  CAS  Google Scholar 

  35. Tran PH-L, Tran TT-D, Lee K-H, Kim D-J, Lee B-J. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv. 2010;7(5):647–61.

    Article  PubMed  CAS  Google Scholar 

  36. Takka S, Rajbhandari S, Sakr A. Effect of anionic polymers on the release rate of propronolol hydrochloride from matrix tablets. Eur J Pharm Biopharm. 2001;52(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  37. Cameron CG, McGinity JW. Controlled release theophylline tablet formulations containing acrylic resins. II. Combination resin formulations. Drug Dev Ind Pharm. 1987;13(8):1409–27.

    Article  CAS  Google Scholar 

  38. Rekhi GS, Nellore RV, Hussain AS, Tillman LG, Malinowski HJ, Augsburger LL. Identification of critical formulation and processing variables for metoprolol tartarate extended release (ER) matrix tablets. J Control Release. 1999;59(3):327–42.

    Article  PubMed  CAS  Google Scholar 

  39. Vandelli MA, Leo E, Foni F, Bernabei MT. Drug release from perforated matrices containing hydroxypropylcellulose. Int J Pharm. 1998;171(2):165–75.

    Article  CAS  Google Scholar 

  40. Li X, Jasti BR. Design of controlled release drug delivery systems. Columbus: McGraw-Hill; 2005.

    Google Scholar 

  41. Liu J, Zhang F, McGinity JW. Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2001;52(2):181–90.

    Article  PubMed  CAS  Google Scholar 

  42. Agrawal AM, Manek RV, Kolling WM, Neau SH. Studies on the interaction of water with ethylcellulose: Effect of polymer particle size. AAPS PharmSciTech. 2003;4(4): article 60.

    Google Scholar 

  43. Iqbal Z, Babar A, Ashraf M. Controlled-release naproxen using micronized ethyl cellulose by wet-granulation and solid-dispersion method. Drug Dev Ind Pharm. 2002;28(2):129–34.

    Article  PubMed  CAS  Google Scholar 

  44. Emeje MO, Kunle OO, Ofoefule SI. Compaction characteristics of ethylcellulose in the presence of some channeling agents: technical note. AAPS PharmSciTech. 2006;7(3): article 58. doi:10.1208/pt070358.

  45. Agrawal AM, Neau SH, Bonate PL. Wet granulation fine particle ethylcellulose tablets: effect of production variables and mathematical modeling of drug release. AAPS PharmSci. 2003;5(2): article 13. doi:10.1208/ps050213.

  46. Upadrashta SM, Katikaneni PR, Hileman GA, Keshary PR. Direct compression controlled release tablets using ethylcellulose matrices. Drug Dev Ind Pharm. 1993;19(4):449–60.

    Article  CAS  Google Scholar 

  47. Neau SH, Howard MA, Claudius JS, Howard DR. The effect of the aqueous solubility of xanthine derivatives on the release mechanism from ethylcellulose matrix tablets. Int J Pharm. 1999;179(1):97–105.

    Article  PubMed  CAS  Google Scholar 

  48. Pollock DK, Sheskey PJ. Micronized ethylcellulose: opportunities in direct-compression controlled-release tablets. Pharm Technol. 1996;20(9):120–30.

    CAS  Google Scholar 

  49. Pather SI, Russell I, Syce JA, Neau SH. Sustained release theophylline tablets by direct compression. Part 1: formulation and in vitro testing. Int J Pharm. 1998;164(1–2):1–10.

    Article  CAS  Google Scholar 

  50. Katikaneni PR, Upadrashta SM, Neau SH, Mitra AK. Ethylcellulose matrix controlled release tablets of a water-soluble drug. Int J Pharm. 1995;123(1):119–25.

    Article  CAS  Google Scholar 

  51. Mehta KA, Kislaloglu MS, Phuapradit W, Malick AW, Shah NH. Release performance of a poorly soluble drug from a novel Eudragit-based multi-unite erosion matrix. Int J Pharm. 2001;213(1–2):7–12.

    Article  PubMed  CAS  Google Scholar 

  52. Wu PC, Huang YB, Chang JS, Tsai MJ, Tsai YH. Design and evaluation of sustained release microspheres of potassium chloride prepared by Eudragit®. Eur J Pharm Sci. 2003;19(2–3):115–22.

    Article  PubMed  CAS  Google Scholar 

  53. Kibbe AH, Wade A, Weller PJ. Handbook of pharmaceutical excipients. Washington: American Pharmaceutical Association; 2000.

    Google Scholar 

  54. Wagner KG, McGinity JW. Influence of chloride ion exchange on the permeability and drug release of Eudragit RS 30 D films. J Control Release. 2002;82(2–3):385–97.

    Article  PubMed  CAS  Google Scholar 

  55. Bodmeier R, Guo X, Sarabia RE, Skultety PF. The influence of buffer species and strength on diltiazem HCl release from beads coated with the aqueous cationic polymer dispersions, Eudragit RS, RL 30D. Pharm Res. 1996;13(1):52–6.

    Article  PubMed  CAS  Google Scholar 

  56. Glaessl B, Siepmann F, Tucker I, Siepmann J, Rades T. Characterisation of quaternary polymethacrylate films containing tartaric acid, metoprolol free base or metoprolol tartrate. Eur J Pharm Biopharm. 2009;73(3):366–72.

    Article  PubMed  CAS  Google Scholar 

  57. Stamm A, Tritsch JC. Some considerations on the liberation of drugs from inert matrices. Drug Dev Ind Pharm. 1986;12(11–13):2337–53.

    Article  CAS  Google Scholar 

  58. Makhija SN, Vavia PR. Once daily sustained release tablets of venlafaxine, a novel antidepressant. Eur J Pharm Biopharm. 2002;54(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  59. Patra CN, Kumar AB, Pandit HK, Singh SP, Devi MV. Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride. Acta Pharm. 2007;57(4):479–89.

    Article  PubMed  CAS  Google Scholar 

  60. Acevez JM, Cruz R, Hernandes E. Preparation and characterization of furosemide-Eudragit controlled-release systems. Int J Pharm. 2000;195(1–2):45–53.

    Article  Google Scholar 

  61. Ceballos A, Cirri M, Maestrelli F, Corti G, Mura P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco. 2005;60(11–12):913–8.

    Article  PubMed  CAS  Google Scholar 

  62. Siepmann F, Eckart K, Maschke A, Kolter K, Siepmann J. Modeling drug release from PVAc/PVP matrix tablets. J Control Release. 2010;141(2):216–22.

    Article  PubMed  CAS  Google Scholar 

  63. Kolter K, Fraunhofer W, Ruchatz F. Properties of Kollidon® SR as a new excipient for sustained release dosage forms. BASF ExAct. 2001;6:5–7.

    Google Scholar 

  64. Reza MS, Quadir MA, Haider SS. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J Pharm Pharm Sci. 2003;6(2):274–91.

    Google Scholar 

  65. Tiwari SB, Murthy TK, Pai MR, Mehta PR, Chowdary PB. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmaSciTech. 2003;4(3): article 31. doi:10.1208/pt040331.

  66. Bodmeier R, Wang J, Bhagwatwar H. Process and formulation variables in the preparation of wax microparticles by a melt dispersion technique. I. Oil-in-water technique for water-insoluble drugs. J Microencapsul. 1992;9(1):89–98.

    Article  PubMed  CAS  Google Scholar 

  67. Miyagawa Y, Okabe T, Yamaguchi Y, Miyajima M, Sato H, Sunada H. Controlled-release of diclofenac sodium from wax matrix granule. Int J Pharm. 1996;138(2):215–24.

    Article  CAS  Google Scholar 

  68. Passerini N, Apertini B. Preparation and characterization of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur J Pharm Sci. 2002;15(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  69. Saraiya D, Bolton S. The use of precirol to prepare sustained release tablet of theophylline and quinidine gluconate. Drug Dev Ind Pharm. 1990;16(13):1963–9.

    Article  CAS  Google Scholar 

  70. Sprockel OL, Sen M, Shivanand P, Prapaitrakul W. A melt extrusion processes for manufacturing matrix drug delivery systems. Int J Pharm. 1997;155(2):191–9.

    Article  CAS  Google Scholar 

  71. Savolainen M, Khoo C, Glad H, Dahlqvist C, Juppo AM. Evaluation of controlled-release polar lipid microparticles. Int J Pharm. 2002;244(1–2):151–61.

    Article  PubMed  CAS  Google Scholar 

  72. Malamataris S, Panagopoulou A, Hatzipantou P. Controlled release from glycerol palmito-stearate matrices prepared by dry-heat granulation and compression at elevated temperature. Drug Dev Ind Pharm. 1991;17(13):1765–77.

    Article  CAS  Google Scholar 

  73. Rao MRP, Ranpise AA, Thanki KC, Borate SG, Parikh GN. Effect of processing and sintering on controlled release wax matrix tablets of ketorolac tromethamine. Indian J Pharm Sci. 2009;71(5):538–44.

    Article  PubMed  Google Scholar 

  74. Li FQ, Hu JH, Deng JX, Su H, Xu S, Liu JY. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int J Pharm. 2006;324(2):152–7.

    Article  PubMed  CAS  Google Scholar 

  75. Barthelemy P, Laforet JP, Farah N, Joachim J. Compritol® 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formations. Eur J Pharm Biopharm. 1999;47(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  76. Mitsubishi-Kagaku Foods Corporation. Ryoto® Sugar Ester Technical Information. Tokyo: Mitsubishi-Kagaku Foods Corporation; 2003.

    Google Scholar 

  77. Ntawukulilyayo JD, Demuynck C, Remon JP. Microcrystalline cellulose-sucrose esters as tablet matrix forming agents. Int J Pharm. 1995;121(2):205–10.

    Article  CAS  Google Scholar 

  78. Chansanroj K, Betz G. Sucrose esters with various hydrophilic–lipophilic properties: Novel controlled release agents for oral drug delivery matrix tablets prepared by direct compaction. Acta Biomater. 2010;6(8):3101–9.

    Article  PubMed  CAS  Google Scholar 

  79. Friedman HI, Nylund B. Intestinal fat digestion, absorption, and transport. A review. Am J Clin Nutr. 1980;33(5):1108–39.

    PubMed  CAS  Google Scholar 

  80. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  PubMed  CAS  Google Scholar 

  81. Shigeoka T, Izawa O, Kitazawa K, Yamauchi F. Studies on the metabolic fate of sucrose esters in rats. Food Chem Toxicol. 1984;22(6):409–14.

    PubMed  CAS  Google Scholar 

  82. Alderman DA. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Tech Prod Manuf. 1984;5(3):1–9.

    CAS  Google Scholar 

  83. Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.

    PubMed  CAS  Google Scholar 

  84. Reynolds TD, Mitchell SA, Balwinski KM. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Dev Ind Pharm. 2002;28(4):457–66.

    Article  PubMed  CAS  Google Scholar 

  85. Vazquez MJ, Perez-Marcos B, Gomez-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A. Influence of technological variables on release of drugs from hydrophilic matrices. Drug Dev Ind Pharm. 1992;18(11–12):1355–75.

    Article  CAS  Google Scholar 

  86. Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm. 2007;66(3):435–50.

    Article  PubMed  CAS  Google Scholar 

  87. Skoug JW, Mikelsons MV, Vigneron CN, Stemm NL. Qualitative evaluation of the mechanism of release of matrix sustained release dosage forms by measurement of polymer release. J Control Release. 1993;27(3):227–45.

    Article  CAS  Google Scholar 

  88. Gao P, Skoug JW, Nixon PR, Ju TR, Stemm NL, Sung K-C. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of influence of formulation variables on matrix performance and drug release. J Pharm Sci. 1996;85(7):732–40.

    Article  PubMed  CAS  Google Scholar 

  89. Kundu SK, Yoshida M, Shibayama M. Effect of salt content on the rheological properties of hydrogel based on oligomeric electrolyte. J Phys Chem B. 2010;114(4):1541–7.

    Article  PubMed  CAS  Google Scholar 

  90. Jain KK. Drug delivery systems. Totowa: Humana Press; 2008.

    Book  Google Scholar 

  91. Cui SW. Food carbohydrates: chemistry, physical properties, and applications. Portland: CRC; 2005.

    Book  Google Scholar 

  92. Sarkar N. Kinetics of thermal gelation of methylcellulose and hydroxypropylmethylcellulose in aqueous solutions. Carbohydr Polym. 1995;26(3):195–203.

    Article  CAS  Google Scholar 

  93. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Hogan JE, Rostron C. The influence of substitution type on the performance of methylcellulose and hydroxypropylmethylcellulose in gels and matrices. Int J Pharm. 1993;100(1–3):143–54.

    Article  CAS  Google Scholar 

  94. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Hogan JE, Rostron C. The influence of the particle size of hydroxypropylmethylcellulose K15M on its hydration and performance in matrix tablets. Int J Pharm. 1993;100(1–3):175–9.

    Article  CAS  Google Scholar 

  95. Scott CT. Pulp extrusion at ultra-high consistencies: Selection of watersoluble polymers for process optimization. In: Proceedings of the 2002 TAPPI fall technical conference and trade fair. San Diego, CA. Atlanta, GA: TAPPI press. 2002; 105–114.

  96. Bajdik J, Baki G, Kelemen A, Pintye-Hodi K. The effect of wetting of powder mixture on the preparation of hydrophilic matrix granules with high-shear granulator. Chem Eng Res Des. 2008;86(1):1–7.

    Article  CAS  Google Scholar 

  97. Baumgartner S, Kristl J, Peppas NA. Network structure of cellulose ethers used in pharmaceutical applications during swelling and at equilibrium. Pharm Res. 2002;19(8):1084–90.

    Article  PubMed  CAS  Google Scholar 

  98. Viridén A, Larsson A, Wittgren B. The effect of substitution pattern of HPMC on polymer release from matrix tablets. Int J Pharm. 2010;389(1–2):147–56.

    Article  PubMed  CAS  Google Scholar 

  99. Viridén A, Wittgren B, Andersson T, Abrahmsén-Alami S, Larsson A. Influence of substitution pattern on solution behavior of hydroxypropyl methylcellulose. Biomacromolecules. 2009;10(3):522–9.

    Article  PubMed  CAS  Google Scholar 

  100. Bhat SD, Aminabhavi TM. Pervaporation separation using sodium alginate and its modified membranes—A review. Sep Purif Rev. 2007;36(3):203–29.

    CAS  Google Scholar 

  101. Sriamornsak P, Sungthongjeen S. Modification of theophylline release with alginate gel formed in hard capsules. AAPS PharmSciTech. 2007;8(3). doi:10.1208/pt0803051.

  102. Tan R, Feng Q, She Z, Wang M, Jin H, Li J, et al. In vitro and in vivo degradation of an injectable bone repair composite. Polym Degrad Stab. 2010;95(9):1736–42.

    Article  CAS  Google Scholar 

  103. Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26(15):2455–65.

    Article  PubMed  CAS  Google Scholar 

  104. Miyazaki S, Kubo W, Attwood D. Oral sustained delivery of theophylline using in si-tu gelation of sodium alginate. J Control Release. 2000;67(2–3):275–80.

    Article  PubMed  CAS  Google Scholar 

  105. Draget KI, Bræk GS, Smidsrød O. Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr Polym. 1994;25(1):31–8.

    Article  CAS  Google Scholar 

  106. Hodsdon AC, Mitchell JR, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. J Control Release. 1995;33(1):143–52.

    Article  CAS  Google Scholar 

  107. Timmins P, Delargy AM, Minchom CM, Howard JR. Influence of some process variables on product properties for a hydrophilic matrix controlled release tablet. Eur J Pharm Biopharm. 1992;38(3):113–8.

    CAS  Google Scholar 

  108. Holte Ø, Onsøyen E, Myrvold R, Karlsen J. Sustained release of water-soluble drug from directly compressed alginate tablets. Eur J Pharm Sci. 2003;20(4–5):403–7.

    Article  PubMed  CAS  Google Scholar 

  109. Sirkiä T, Salonen H, Veski P, Jürjenson H, Marvola M. Biopharmaceutical evaluation of new prolonged-release press-coated ibuprofen tablets containing sodium alginate to adjust drug release. Int J Pharm. 1994;107(3):179–87.

    Article  Google Scholar 

  110. Bayomi MA, Al-Suwayeh SA, El-Helw A-RM. Excipient-excipient interaction in the design of sustained-release theophylline tablets: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2001;27(6):499–506.

    Article  PubMed  CAS  Google Scholar 

  111. Kaneko K, Kanada K, Yamada T, Miyagi M, Saito N, Ozeki T, et al. Formation of water-insoluble gel in dry coated tablets for the controlled release of theophylline. Chem Pharm Bull. 1998;46(4):728–9.

    PubMed  CAS  Google Scholar 

  112. Kaneko K, Kanada K, Yamada T, Miyagi M, Saito N, Ozeki T, et al. Application of gel formation for taste masking. Chem Pharm Bull. 1997;45(6):1063–8.

    CAS  Google Scholar 

  113. Liew CV, Chan LW, Ching AL, Heng PSW. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm. 2006;309(1–2):25–37.

    Article  PubMed  CAS  Google Scholar 

  114. Talukdar MM, Michoel A, Rombaut P, Kinget R. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behavior. Int J Pharm. 1996;129(1–2):233–41.

    Article  CAS  Google Scholar 

  115. Talukdar MM, Kinget R. Swelling and drug release behavior of xanthan gum matrix tablets. Int J Pharm. 1995;120(1):63–72.

    Article  CAS  Google Scholar 

  116. Sujja-areevath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling, erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur J Pharm Sci. 1998;6(3):207–17.

    Article  PubMed  CAS  Google Scholar 

  117. Singlga M, Chawla A, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm. 2000;26(9):913–24.

    Article  Google Scholar 

  118. Park HS, Chun MK, Choi HK. Preparation of an extended-release matrix tablet using chitosan/carbopol interpolymer complex. Int J Pharm. 2008;347(1–2):39–44.

    Article  PubMed  CAS  Google Scholar 

  119. Kriwet B, Kissel T. Interactions between bioadhesive poly(acrylic acid) and calcium ions. Int J Pharm. 1996;127(2):135–45.

    Article  CAS  Google Scholar 

  120. Hagerstrom H, Paulsson M, Edsman K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur J Pharm Sci. 2000;9(3):301–9.

    Article  PubMed  CAS  Google Scholar 

  121. Veiga F, Salsa T, Pina ME. Oral controlled release dosage forms. II. Glassy polymers in hydrophilic matrices. Drug Dev Ind Pharm. 1998;24(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  122. Apicella A, Cappello B, Nobile MAD, Rotonda MIL, Mensitieri G, Nicolais L. Poly(Ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release. Biomaterials. 1993;14(2):83–90.

    Article  PubMed  CAS  Google Scholar 

  123. Kim CJ. Drug release from compressed hydrophilic polyox-WSR Tablets. J Pharm Sci. 1995;84(3):303–6.

    Article  PubMed  CAS  Google Scholar 

  124. Kim CJ. Effects of drug solubility, drug loading, and polymer molecular weight on drug release from Polyox tablets. Drug Dev Ind Pharm. 1998;24(7):645–51.

    Article  PubMed  CAS  Google Scholar 

  125. Xie Y, Xie P, Song X, Tang X, Song H. Preparation of esomeprazole zinc solid dispersion and study on its pharmacokinetics. Int J Pharm. 2008;360(1–2):53–7.

    Article  PubMed  CAS  Google Scholar 

  126. Tiwari R, Tiwari G, Srivastava S, Rai AK. Solid dispersions: an overview to modify bioavailability of poorly water soluble drugs. Int J PharmTech Res. 2009;1(4):1338–49.

    CAS  Google Scholar 

  127. Fernández M, Rodríguez IC, Margarit MV, Cerezo A. Characterization of solid dispersions of piroxicam/poly(ethylene glycol) 4000. Int J Pharm. 1992;84(2):197–202.

    Article  Google Scholar 

  128. Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm. 2006;308(1–2):115–23.

    Article  PubMed  CAS  Google Scholar 

  129. Shivakumar HN, Desai BG, Deshmukh G. Design and optimization of diclofenac sodium controlled release solid dispersions by response surface methodology. Ind J Pharm Sci. 2008;70(1):22–30.

    Article  CAS  Google Scholar 

  130. Ozeki T, Yuasa H, Kanaya Y, Oishi K. Application of the solid dispersion method to the controlled release of medicine. VII. Release mechanism of a highly water-soluble medicine from solid dispersion with different molecular weight of polymer. Chem Pharm Bull. 1995;43(4):660–5.

    CAS  Google Scholar 

  131. Filippis PD, Zingone G, Gibellini M, Rubessa F, Rupena P. Dissolution rates of different drugs from solid dispersions with Eudragit RS. Eur J Pharm Sci. 1995;3(5):265–71.

    Article  Google Scholar 

  132. Patil SA, Kuchekar BS, Chabukswar AR, Jagdale SC. Formulation and evaluation of extended-release solid dispersion of metformin hydrochloride. J Young Pharm. 2010;2(2):121–9.

    PubMed  CAS  Google Scholar 

  133. Lovrecich M, Nobile F, Rubessa F, Zingone G. Effect of ageing on the release of indomethacin from solid dispersions with Eudragit. Int J Pharm. 1996;131(2):247–55.

    Article  CAS  Google Scholar 

  134. Gupta MK, Bogner RH, Goldman D, Tseng YC. Mechanism for further enhancement in drug dissolution from solid-dispersion granules upon storage. Pharm Dev Technol. 2002;7(1):103–12.

    Article  PubMed  CAS  Google Scholar 

  135. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 2008;70(2):493–9.

    Article  PubMed  CAS  Google Scholar 

  136. Ohara T, Kitamura S, Kitagawa T, Terada K. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int J Pharm. 2005;302(1–2):95–102.

    Article  PubMed  CAS  Google Scholar 

  137. Dixit RP, Nagarsenkar MS. In vitro and in vivo advantage of celecoxib surface solid dispersion and dosage form development. Ind J Pharm Sci. 2007;69(3):370–7.

    CAS  Google Scholar 

  138. Coppens KA, Hall MJ, Mitchell SA, Read MD. Hypromellose, ethylcellulose, and polyethylene oxide use in hot melt extrusion (cover story). Pharm Technol. 2006;30(1):62–70.

    CAS  Google Scholar 

  139. Chokshi R, Zia H. Hot-melt extrusion technique: a review. IJPR. 2004;3(1):3–16.

    Google Scholar 

  140. Young CR, Koleng JJ, McGinity JW. Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm. 2002;242(1–2):87–92.

    Article  PubMed  CAS  Google Scholar 

  141. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm. 2004;269(2):509–22.

    Article  PubMed  CAS  Google Scholar 

  142. McGinity JW, Zhang F. Melt-extruded controlled-release dosage forms. In: Ghebre-Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker. 2003; 133: 183–208.

  143. Ozawa M, Hasegawa K, Yonezawa Y, Sunada H. Preparation of solid dispersion for ethenzamide-carbopol and theophylline-carbopol systems using a twin screw extruder. Chem Pharm Bull. 2002;50(6):802–7.

    Article  PubMed  CAS  Google Scholar 

  144. Nakamichi K, Yasuura H, Fukui H. Preparation of nifedipine-hydroxypropylmethylcellulose phthalate solid dispersion by twin screw extruder and its evaluation. J Pharm Sci Technol Jpn. 1996;56(1):15–22.

    CAS  Google Scholar 

  145. Sato H, Miyagawa Y, Okabe T, Miyajima M, Sunada H. Dissolution mechanism of diclofenac sodium from wax matrix granules. J Pharm Sci. 1997;86(8):929–34.

    Article  PubMed  CAS  Google Scholar 

  146. Nakamichi K, Nakano T, Yasuura H, Izumi S, Kawashima Y. The role of the kneading paddle and the effects of screw revolution speed and water content on the preparation of solid dispersions using a twin-screw extruder. Int J Pharm. 2002;241(2):203–11.

    Article  PubMed  CAS  Google Scholar 

  147. Holm P, Buur A, Elema MO, Mollgaard B, Holm JE, Schultz K. Controlled agglomeration. United States Patent 7,217,431. US Patent and Trademark Office. May 15, 2007.

  148. Kawashima Y, Niwa T, Handa T, Takeuchi H, Iwamoto T, Itoh K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J Pharm Sci. 1989;78(1):68–72.

    Article  PubMed  CAS  Google Scholar 

  149. Cui F, Yang M, Jiang Y, Cun D, Lin W, Fan Y, et al. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J Control Release. 2003;91(3):375–84.

    Article  PubMed  CAS  Google Scholar 

  150. Yang M, Cui F, You B, Fan Y, Wang L, Yue P, et al. Preparation of sustained-release nitrendipine microspheres with Eudragit RS and Aerosil using quasi-emulsion solvent diffusion method. Int J Pharm. 2003;259(1–2):103–13.

    Article  PubMed  CAS  Google Scholar 

  151. Hu R, Zhu J, Chen G, Sun Y, Mei K, Li S. Preparation of sustained-release simvastatin microspheres by the spherical crystallization technique. Asian J Pharm Sci. 2006;1(1):47–52.

    CAS  Google Scholar 

  152. Beten DB, Amighi K, Moes AJ. Preparation of controlled-release coevaporates of dipyridamole by loading neutral pellets in a fluidized-bed coating system. Pharm Res. 1995;12(9):1269–72.

    Article  PubMed  CAS  Google Scholar 

  153. Ho H, Su HL, Tsai T, Sheu MT. The preparation and characterization of solid dispersions on pellets using a fluidized bed system. Int J Pharm. 1996;139(1–2):223–9.

    Article  CAS  Google Scholar 

  154. Gilis PA, De Conde V, Vandecruys R. Beads having a core coated with an antifungal and a polymer. US patent 5,633,015. 1997.

  155. Yan G, Li H, Zhang R, Ding D. Preparation and evaluation of a sustained-release formulation of nifedipine HPMC tablets. Drug Dev Ind Pharm. 2000;26(6):681–6.

    Article  PubMed  CAS  Google Scholar 

  156. Klokkers K. Solid, non-deliquescent formulations of sodium valproate. US Patent 6204255. 2001.

  157. Rathinaraj BS, Rajveer C, Choudhury PK, Sheshrao G, Shinde GV. Studies on dissolution behavior of sustained release solid dispersion of nimodipine. Int J Pharm Sci Rev Res. 2010;3(1):77–82.

    CAS  Google Scholar 

  158. Chen H, Jiang G, Ding F. Monolithic osmotic tablet containing solid dispersion of 10-hydroxycamptothecin. Drug Dev Ind Pharm. 2009;35(2):131–7.

    Article  PubMed  CAS  Google Scholar 

  159. Kigoshi M, Masada T, Ueno Y, Ishikawa Y, Hayakawa E. Solid dispersion dosage form of amorphous xanthine derivative and enteric-coating polymer. US Patent 6254889. 2001.

  160. Fischer G, Bar-Shalom D, Slot L, Lademann A-M, Jensen C. Controlled release solid dispersions. WO/2003/024426. 2003.

  161. Zeng A, Yuan B, Fu Q, Wang C, Zhao G. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug. Pharm Dev Technol. 2009;14(5):499–505.

    Article  PubMed  CAS  Google Scholar 

  162. Wan LSC, Heng PWS, Wong LF. Relationship between swelling and drug release in a hydrophilic matrix. Drug Dev Ind Pharm. 1993;19(10):1201–10.

    Article  CAS  Google Scholar 

  163. Colombo P, Bettini R, Peppas NA. Observation of swelling process and diffusion front position during swelling in hydroxypropyl methylcellulose (HPMC) matrices containing a soluble drug. J Control Release. 1999;61(1–2):83–91.

    Article  PubMed  CAS  Google Scholar 

  164. Rajabi-Siahboomi AR, Bowtell RW, Mansfield P, Henderson A, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 2. NMR-imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydration. J Control Release. 1994;31(2):121–8.

    Article  CAS  Google Scholar 

  165. Fyfe CA, Blazek AI. Investigation of hydrogel formation from hydroxypropylmethylcellulose (HPMC) by NMR spectroscopy and NMR imaging techniques. Macromolecules. 1997;30(20):6230–7.

    Article  CAS  Google Scholar 

  166. Hyde TM, Gladden LF. Simultaneous measurement of water and polymer concentration profiles during swelling of poly(ethylene oxide) using magnetic resonance imaging. Polymer. 1998;39(4):811–9.

    Article  CAS  Google Scholar 

  167. Tritt-Goc J, Piślewski N. Magnetic resonance imaging study of the swelling kinetics of hydroxypropylmethylcellulose (HPMC) in water. J Control Release. 2002;80(1–3):79–86.

    Article  PubMed  CAS  Google Scholar 

  168. Baumgartner S, Lahajnar G, Sepe A, Kristl J. Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H NMR and MRI methods. Eur J Pharm Biopharm. 2005;59(2):299–306.

    Article  PubMed  CAS  Google Scholar 

  169. Fyfe CA, Blazek-Welsh AI. Quantitative NMR imaging study of the mechanism of drug release from swelling hydroxypropylmethylcellulose tablets. J Control Release. 2000;68(3):313–33.

    Article  PubMed  CAS  Google Scholar 

  170. Dahlberg C, Fureby A, Schuleit M, Dvinskikh SV, Furó I. Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study. J Control Release. 2007;122(2):199–205.

    Article  PubMed  CAS  Google Scholar 

  171. Borst I, Ugwu S, Beckett AH. New and extended application for USP drug release apparatus 3. Dissolut Technol. 1997; 1–6.

  172. Kar RK, Mohapatra S, Barik BB. Design and characterization of controlled release matrix tablets of zidovudine. Asian J Pharm Clin Res. 2009;2(2):54–61.

    CAS  Google Scholar 

  173. Thoma K, Ziegler I. Simultaneous quantification of released succinic acid and a weakly basic drug compound in dissolution media. Eur J Pharm Biopharm. 1998;46(2):183–90.

    Article  PubMed  CAS  Google Scholar 

  174. Streubel A, Siepmann J, Dashevsky A, Bodmeier R. pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Control Release. 2000;67(1):101–10.

    Article  PubMed  CAS  Google Scholar 

  175. Kranz H, Guthmannb C, Wagner T, Lipp R, Reinhard J. Development of a single unit extended release formulation for ZK 811 752, a weakly basic drug. Eur J Pharm Sci. 2005;26(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  176. Siepe S, Lueckel B, Krammer A, Ries A, Gurny R. Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int J Pharm. 2006;316(1–2):14–20.

    Article  PubMed  CAS  Google Scholar 

  177. Doherty C, York P. Microenvironmental pH control of drug dissolution. Int J Pharm. 1989;50(3):223–32.

    Article  CAS  Google Scholar 

  178. Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts II: salicylic acid, Theophylline, and Benzoic acid. J Pharm Sci. 1985;74(2):148–54.

    Article  PubMed  CAS  Google Scholar 

  179. Pudipeddi M, Zannou EA, Vasanthavada M, Dontabhaktuni A, Royce AE, Joshi YM, et al. Measurement of surface pH of pharmaceutical solids: a critical evaluation of indicator dye-sorption method and its comparison with slurry pH method. J Pharm Sci. 2008;97(5):1831–42.

    Article  PubMed  CAS  Google Scholar 

  180. Siepe S, Herrmann W, Borchert HH, Lueckel B, Kramer A, Ries A, et al. Microenvironmental pH and microviscosity inside pH-controlled matrix tablets: an EPR imaging study. J Control Release. 2006;112(1):72–8.

    Article  PubMed  CAS  Google Scholar 

  181. Cope SJ, Hibberd S, Whetstone J, Macrae RJ, Melia CD. Measurement and mapping of pH in hydrating pharmaceutical pellets using confocal laser scanning microscopy. Pharm Res. 2002;19(10):1554–63.

    Article  PubMed  CAS  Google Scholar 

  182. Oth MP, Moës AJ. Sustained release solid dispersions of indomethacin with Eudragit RS and RL. Int J Pharm. 1989;55(2–3):157–64.

    Article  CAS  Google Scholar 

  183. Varshosaz J, Faghihian H, Rastgoo K. Preparation and characterization of metoprolol controlled-release solid dispersions. Drug Deliv. 2006;13(4):295–302.

    Article  PubMed  CAS  Google Scholar 

  184. Tiwari G, Tiwari R, Srivastava B, Rai AK. Development and optimization of multi-unit solid dispersion systems of poorly water soluble drug. Research J Pharm Tech. 2008;1(4):444–9.

    CAS  Google Scholar 

  185. Nazzal S, Khan MA. Controlled release of a self-emulsifying formulation from a tablet dosage form: Stability assessment and optimization of some processing parameters. Int J Pharm. 2006;315(1–2):110–21.

    Article  PubMed  CAS  Google Scholar 

  186. Shah NH, Carvajal MT, Patel CI, Infeld MH, Malick AW. Self-emulsifying drug delivery systems (SEDDS) with polyglycolized glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106(1):15–23.

    Article  CAS  Google Scholar 

  187. Craig DQM, Barker SA, Banning D, Booth SW. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm. 1995;114(1):103–10.

    Article  CAS  Google Scholar 

  188. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12(11):1561–72.

    Article  PubMed  CAS  Google Scholar 

  189. Gursoy NR, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education, Science and Technology and by a grant from the Korean Health Technology R&D Project, Ministry for Health and Welfare (A092018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom-Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, P.HL., Tran, T.TD., Park, J.B. et al. Controlled Release Systems Containing Solid Dispersions: Strategies and Mechanisms. Pharm Res 28, 2353–2378 (2011). https://doi.org/10.1007/s11095-011-0449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0449-y

KEY WORDS

Navigation