Pharmaceutical Research

, Volume 28, Issue 8, pp 1919–1930 | Cite as

Laser-Engineered Dissolving Microneedle Arrays for Transdermal Macromolecular Drug Delivery

  • Katarzyna Migalska
  • Desmond I. J. Morrow
  • Martin J. Garland
  • Raj Thakur
  • A. David Woolfson
  • Ryan F. Donnelly
Research Paper



To assess the feasibility of transdermal macromolecule delivery using novel laser-engineered dissolving microneedles (MNs) prepared from aqueous blends of 20% w/w poly(methylvinylether maleic anhydride) (PMVE/MA) in vitro and in vivo.


Micromoulding was employed to prepare insulin-loaded MNs from aqueous blends of 20% w/w PMVE/MA using laser-engineered moulds. To investigate conformational changes in insulin loaded into MNs, circular dichroism spectra were obtained. In vitro drug release studies from MNs across neonatal porcine skin were performed using Franz diffusion cells. The in vivo effect of MNs was assessed by their percutaneous administration to diabetic rats and measurement of blood glucose levels.


MNs loaded with insulin constituted exact counterparts of mould dimensions. Circular dichroism analysis showed that encapsulation of insulin within polymeric matrix did not lead to change in protein secondary structure. In vitro studies revealed significant enhancement in insulin transport across the neonatal porcine skin. Percutaneous administration of insulin-loaded MN arrays to rats resulted in a dose-dependent hypoglycaemic effect.


We demonstrated the efficacy of MNs prepared from aqueous blends of PMVE/MA in transdermal delivery of insulin. We are currently investigating the fate of the delivered insulin in skin and MN-mediated delivery of other macromolecules.


insulin laser engineering microneedles transdermal drug delivery 



blood glucose level


bovine serum albumin


circular dichroism




poly(methylvinylether) maleic anhydride


stratum corneum


  1. 1.
    Brown L. Commercial challenges of protein drug delivery. Expert Opin Drug Del. 2005;2(1):29–42.CrossRefGoogle Scholar
  2. 2.
    Kumar T, Soppimath K, Nachaegari S. Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol. 2006;7:261–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Banga AK. Therapeutic Peptides and Proteins: Formulation, Processing and Delivery Systems. Boca Raton: CRC Press; 2006.Google Scholar
  4. 4.
    Gupta H, Sharma A. Recent trends in protein and peptide drug delivery systems. Asian J Pharm. 2009;3(2):69–75.CrossRefGoogle Scholar
  5. 5.
    Benson H, Namjoshi S. Proteins and peptides: Strategies for delivery to and across the skin. J Pharm Sci. 2008;97(9):3591–610.PubMedCrossRefGoogle Scholar
  6. 6.
    Chaturvedula A, Joshi D, Anderson C, Morris R, Sembrowich W, Banga A. In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. Int J Pharm. 2005;97(1–2):190–6.Google Scholar
  7. 7.
    Medi B, Singh J. Electronically facilitated transdermal delivery of human parathyroid hormone (1–34). Int J Pharm. 2003;263:25–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Park E, Werner J, Smith N. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res. 2007;24(7):1396–401.PubMedCrossRefGoogle Scholar
  9. 9.
    Badkar A, Smith A, Eppstein J, Banga A. Transdermal delivery of interferon alpha-2B using microporation and iontophoresis in hairless rats. Pharm Res. 2007;24:1389–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Fang JY, Lee WR, Shen SC, Wang HY, Fang CL, Hu CH. Transdermal delivery of macromolecules by erbium:YAG laser. J Control Release. 2004;100:75–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaushik S, Allen H, Donald D, McAllister D, Smitra S, Allen M, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92:502–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Martanto W, Davis SP, Holiday NR, Wang J, Gill H, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21(6):947–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Donnelly RF, Morrow DIJ, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J Control Release. 2008;129:154–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19(1):63–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis S, Martanto W, Allen M, Prausnitz M. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005;52(5):909–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104:51–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Donnelly RF, Majithiya R, Singh R, Morrow D, Garland M, Demir YK, et al. Design, optimization and characterization of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Henricus M, Johnon K, Banerje I. Investigation of insulin loaded self-assembled microtubulus for drug release. Bioconjug Chem. 2008;19:2394–400.PubMedCrossRefGoogle Scholar
  23. 23.
    Bouchard M, Zurdo J, Nettleton E, Dobson C, Robinson C. Formation of insulin amyloid fibrils followed by FTIR and simultaneously with CD and electron microscopy. Protein Sci. 2000;9:1960–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med. 2003;20:886–98.PubMedCrossRefGoogle Scholar
  25. 25.
    Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol. 2004;22(2):192–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Ito Y, Saeki A, Shiroyama K, Sugioka N, Takada K. Percutaneous absorption of interferon-alpha by self-dissolving micropiles. J Drug Target. 2008;16(3):243–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Langkjaer L, Brange J, Grodsky GM, Guy R. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment. J Control Release. 1998;51:47–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Tezel A, Sens A, Mitragotri S. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. J Pharm Sci. 2003;92(2):381–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Ito Y, Ohashi Y, Saeki A, Sugioka N, Takada K. Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs Chem. Pharm Bull. 2008;56(3):243–6.CrossRefGoogle Scholar
  30. 30.
    Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet. 2003;42(5):461–74.PubMedCrossRefGoogle Scholar
  31. 31.
    King M, Badea I, Solomon J, Kumar P, Gaspar K, Foldvari M. Transdermal delivery of insulin from novel biphasic lipid system in diabetic rats. Diab Technol The. 2002;4(4):479–88.CrossRefGoogle Scholar
  32. 32.
    Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, et al. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005;22(4):550–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Banga A. Theme section: Transdermal delivery of proteins. Pharm Res. 2007;24(7):1357–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Ito Y, Yamazaki T, Sugioka N, Takada K. Self-dissolving micropile array tips for percutaneous administration of insulin. J Mater Sci Mater M. 2010;21:835–41.CrossRefGoogle Scholar
  35. 35.
    Donnelly RF, Morrow DIJ, Thakur RRS, Migalska K, McCarron PA, O'Mahony C, et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm. 2009;35:1242–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Ito Y, Eiji H, Atsushi S, Nobuyuki S, Kanji T. Feasibility of microneedles for percutaneous absorption of insulin. Euro J Pharm Sci. 2006;29(1):82–8.CrossRefGoogle Scholar
  37. 37.
    Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater. 2008;20:933–8.CrossRefGoogle Scholar
  38. 38.
    Wangoo N, Suri C, Shekawat G. Interaction of gold nanoparticles with protein: A spectroscopic study to monitor protein conformational changes. App. Phys. Lett. 2008;92(13) ID 133104Google Scholar
  39. 39.
    Brandes N, Welzel P, Werner C, Kroh L. Adsorption-induced conformational changes of proteins onto ceramic particles: Differential scanning calorimetry and FTIR analysis. J Colloid Interf Sci. 2006;299(1):56–69.CrossRefGoogle Scholar
  40. 40.
    Lougheed WD, Woulfe-Flanagan H, Clement JR, Albisser A. Insulin aggregation in artificial delivery systems. Diabetologia. 1980;19:1–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Pillai O, Borkute S, Sivaprasad N, Panchagnula R. Transdermal iontophoresis of insulin II. Physicochemical considerations. Int J Pharm. 2003;254:271–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Huang Y, Wu S. Stability of peptides during iontophoretic transdermal delivery. Int J Pharm. 1996;131:19–23.CrossRefGoogle Scholar
  43. 43.
    Srinivasan V, Higuchi W, Sims S, Ghanem A, Behl C. Transdermal iontophoretic drug delivery: Mechanistic analysis and application to polypeptide delivery. J Pharm Sci. 1989;78(5):370–5.PubMedCrossRefGoogle Scholar
  44. 44.
    International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, ICH harmonised tripartite guideline—Validation of Analytical Procedures: Text and Methodology—Q2(R1), 2005Google Scholar
  45. 45.
    Kadima W, Ogendal L, Bauer R, Kaarsholm N, Brodersen K, Hansen JF, et al. The influence of ionic strength and pH on the aggregation properties of zinc-free insulin studied by static and dynamic laser light scattering. Biopolymers. 1993;33(11):1643–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Tokumoto S, Higo N, Sugibayashi K. Effect of electroporation and pH on iontophoretic transdermal delivery of human insulin. Int J Pharm. 2006;326:13–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Sadhale Y, Shah J. Biological activity of insulin in GMO gels and the effect of agitation Int. J Pharm. 1999;191:65–74.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Katarzyna Migalska
    • 1
  • Desmond I. J. Morrow
    • 1
  • Martin J. Garland
    • 1
  • Raj Thakur
    • 1
  • A. David Woolfson
    • 1
  • Ryan F. Donnelly
    • 1
  1. 1.School of PharmacyQueen’s University Belfast, Medical Biology CentreBelfastUK

Personalised recommendations