Skip to main content
Log in

Lyophilization of Protein-Loaded Polyelectrolyte Microcapsules

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate if lyophilization can be used to obtain a dry formulation of polyelectrolyte microcapsules, which have emerged as a new class of microparticles for the encapsulation and delivery of biomacromolecules.

Methods

Microcapsules composed of dextran sulfate and poly-L-arginine were obtained by coating CaCO3 microparticles by means of the layer-by-layer technique. Microcapsules were lyophilized using different stabilizers; intactness was checked by CLSM and SEM. Horseradish peroxidase was encapsulated as model enzyme and retained activity after freeze-drying was determined using a fluorescence assay. Ovalbumin was encapsulated as model antigen; immunogenicity after lyophilization was evaluated in vitro by a T-cell proliferation assay and in vivo by measuring the antibody titer in mice.

Results

The results clearly demonstrate the necessity of using polyols in the formulation to prevent rupture of the microcapsules and to preserve the activity of encapsulated enzymes. Lyophilized microcapsules appeared as a promising adjuvant for antigen delivery, as both in vitro as in vivo assays showed higher immune activation compared to free antigen.

Conclusions

Lyophilization is a promising strategy towards improved stability of protein-loaded microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEXS:

dextran sulfate

HRP:

horseradish peroxidase

LbL:

layer-by-layer

OVA:

ovalbumin

pARG:

poly-L-arginine

REFERENCES

  1. Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1993;277(5330):1232–7.

    Article  Google Scholar 

  2. Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Edit. 1998;37(16):2202–5.

    CAS  Google Scholar 

  3. Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, et al. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym Advan Technol. 1998;9(10–11):759–67.

    Article  CAS  Google Scholar 

  4. Gao CY, Leporatti S, Moya S, Donath E, Mohwald H. Stability and mechanical properties of polyelectrolyte capsules obtained by stepwise assembly of poly(styrenesulfonate sodium salt) and poly(diallyldimethyl ammonium) chloride onto melamine resin particles. Langmuir. 2001;17(11):3491–5.

    Article  CAS  Google Scholar 

  5. Dai ZF, Mohwald H. Highly stable and biocompatible nafion-based capsules with controlled permeability for low-molecular-weight species. Chem Eur J. 2002;8(20):4751–5.

    Article  CAS  Google Scholar 

  6. Schuler C, Caruso F. Decomposable hollow biopolymer-based capsules. Biomacromolecules. 2001;2(3):921–6.

    Article  PubMed  CAS  Google Scholar 

  7. De Geest BG, Vandenbroucke RE, Guenther AM, Sukhorukov GB, Hennink WE, Sanders NN, et al. Intracellularly degradable polyelectrolyte microcapsules. Adv Mater. 2006;18(8):1005–9.

    Article  Google Scholar 

  8. Zhao QH, Mao ZW, Gao CY, Shen JC. Assembly of multilayer microcapsules on CaCO3 particles from biocompatible polysaccharides. J Biomat Sci Polym E. 2006;17(9):997–1014.

    Article  CAS  Google Scholar 

  9. Caruso F, Niikura K, Furlong DN, Okahata Y. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir. 1997;13(13):3427–33.

    Article  CAS  Google Scholar 

  10. Vinogradova OI, Lebedeva OV, Vasilev K, Gong HF, Garcia-Turiel J, Kim BS. Multilayer DNA/poly(allylamine hydrochloride) microcapsules: Assembly and mechanical properties. Biomacromolecules. 2005;6(3):1495–502.

    Article  PubMed  CAS  Google Scholar 

  11. Sukhorukov GB, Donath E, Moya S, Susha AS, Voigt A, Hartmann J, et al. Microencapsulation by means of step-wise adsorption of polyelectrolytes. J Microencapsul. 2000;17(2):177–85.

    Article  PubMed  CAS  Google Scholar 

  12. Caruso F, Susha AS, Giersig M, Mohwald H. Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres. Adv Mater. 1999;11(11):950–3.

    Article  CAS  Google Scholar 

  13. De Geest BG, Skirtach AG, Mamedov AA, Antipov AA, Kotov NA, De Smedt SC, et al. Ultrasound-triggered release from multilayered capsules. Small. 2007;3(5):804–8.

    Article  PubMed  Google Scholar 

  14. De Geest BG, Sanders NN, Sukhorukov GB, Demeester J, De Smedt SC. Release mechanisms for polyelectrolyte capsules. Chem Soc Rev. 2007;36(4):636–49.

    Article  PubMed  Google Scholar 

  15. Neu B, Voigt A, Mitlohner R, Leporatti S, Gao CY, Donath E, et al. Biological cells as templates for hollow microcapsules. J Microencapsul. 2001;18(3):385–95.

    Article  PubMed  CAS  Google Scholar 

  16. Qiu XP, Leporatti S, Donath E, Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir. 2001;17(17):5375–80.

    Article  CAS  Google Scholar 

  17. Ai H, Jones SA, de Villiers MM, Lvov YM. Nano-encapsulation of furosemide microcrystals for controlled drug release. J Control Release. 2003;86(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  18. Radtchenko IL, Sukhorukov GB, Leporatti S, Khomutov GB, Donath E, Mohwald H. Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of the multilayers and encapsulation of macromolecules into polyelectrolyte capsules. J Colloid Interf Sci. 2000;230(2):272–80.

    Article  CAS  Google Scholar 

  19. Caruso F, Spasova M, Susha A, Giersig M, Caruso RA. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater. 2001;13(1):109–16.

    Article  CAS  Google Scholar 

  20. Sun G, Zhang Z. Mechanical properties of melamine-formaldehyde microcapsules. J Microencapsul. 2001;18(5):593–602.

    Article  PubMed  CAS  Google Scholar 

  21. Antipov AA, Shchukin D, Fedutik Y, Petrov AI, Sukhorukov GB, Mohwald H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloid Surf A. 2003;224(1–3):175–83.

    Article  CAS  Google Scholar 

  22. Tong WJ, Gao CY. Selective removal of particle cores to fabricate manganese carbonate hollow spheres and composite microcapsules. Colloid Surf A. 2007;295(1–3):233–8.

    Article  CAS  Google Scholar 

  23. Dahne L, Leporatti S, Donath E, Mohwald H. Fabrication of micro reaction cages with tailored properties. J Am Chem Soc. 2001;123(23):5431–6.

    Article  PubMed  CAS  Google Scholar 

  24. Mao ZW, Ma L, Gao CY, Shen JC. Preformed microcapsules for loading and sustained release of ciprofloxacin hydrochloride. J Control Release. 2005;104(1):193–202.

    Article  PubMed  CAS  Google Scholar 

  25. Liu XY, Gao CY, Shen JC, Mohwald H. Multilayer microcapsules as anti-cancer drug delivery vehicle: Deposition, sustained release, and in vitro bioactivity. Macromol Biosci. 2005;5(12):1209–19.

    Article  PubMed  CAS  Google Scholar 

  26. Sukhorukov GB, Rogach AL, Garstka M, Springer S, Parak WJ, Munoz-Javier A, et al. Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications. Small. 2007;3(6):944–55.

    Article  PubMed  CAS  Google Scholar 

  27. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir. 2004;20(8):3398–406.

    Article  PubMed  CAS  Google Scholar 

  28. Petrov AI, Volodkin DV, Sukhorukov GB. Protein-calcium carbonate coprecipitation: a tool for protein encapsulation. Biotechnol Progr. 2005;21(3):918–25.

    Article  CAS  Google Scholar 

  29. Lvov Y, Antipov AA, Mamedov A, Mohwald H, Sukhorukov GB. Urease encapsulation in nanoorganized microshells. Nano Lett. 2001;1(3):125–8.

    Article  CAS  Google Scholar 

  30. Tiourina OP, Antipov AA, Sukhorukov GB, Larionova NL, Lvov Y, Mohwald H. Entrapment of alpha-chymotrypsin into hollow polyelectrolyte microcapsules. Macromol Biosci. 2001;1(5):209–14.

    Article  CAS  Google Scholar 

  31. Yu AM, Wang YJ, Barlow E, Caruso F. Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules. Adv Mater. 2005;17(14):1737–41.

    Article  CAS  Google Scholar 

  32. Stein EW, Volodkin DV, McShane MJ, Sukhorukov GB. Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized mucose oxiase and peroxidise. Biomacromolecules. 2006;7(3):710–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kreft O, Prevot M, Mohwald H, Sukhorukov GB. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. Angew Chem Int Edit. 2007;46(29):5605–8.

    Article  CAS  Google Scholar 

  34. De Koker S, De Geest BG, Cuvelier C, Ferdinande L, Deckers W, Hennink WE, et al. In vivo cellular uptake, degradation, and biocompatibility of polyelectrolyte microcapsules. Adv Funct Mater. 2007;17(18):3754–63.

    Article  Google Scholar 

  35. De Koker S, Naessens T, De Geest BG, Bogaert P, Demeester J, De Smedt SC, et al. Biodegradable polyelectrolyte microcapsules: antigen delivery tools with Th17 skewing activity after pulmonary delivery. J Immunol. 2010;184(1):203–11.

    Article  PubMed  Google Scholar 

  36. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60.

    Article  PubMed  CAS  Google Scholar 

  37. Volodkin DV, Larionova NI, Sukhorukov GB. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules. 2004;5(5):1962–72.

    Article  PubMed  CAS  Google Scholar 

  38. Carpenter JF, Crowe LM, Crowe JH. Stabilization of phosphofructokinase with sugars during freeze-drying—characterization of enhanced protection in the presence of divalent-cations. Biochim Biophys Acta. 1987;923(1):109–15.

    PubMed  CAS  Google Scholar 

  39. Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71(4):2087–93.

    Article  PubMed  CAS  Google Scholar 

  40. Gomez G, Pikal MJ, Rodriguez-Hornedo N. Effect of initial buffer composition on pH changes during far from equilibrium freezing of sodium phosphate buffer solutions. Pharm Res. 2001;18(1):90–7.

    Article  PubMed  CAS  Google Scholar 

  41. Tang XL, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  PubMed  CAS  Google Scholar 

  42. Chang LQ, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009;98(9):2886–908.

    Article  PubMed  CAS  Google Scholar 

  43. Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochem US. 1989;28(9):3916–22.

    Article  CAS  Google Scholar 

  44. Hatley RHM, Vandenberg C, Franks F. The unfrozen water-content of maximally freeze concentrated carbohydrate solutions—validity of the methods used for its determination. CryoLetters. 1991;12(2):113–24.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank prof Y. van Kooyk and S. Singh for performing the in vitro T-cell assays. We also wish to thank E. Adriaens for help with fluorescent assays and O. Janssens for taking SEM images. We would also like to acknowledge the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for founding the BRAINSTIM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan C. De Smedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Temmerman, ML., Rejman, J., Grooten, J. et al. Lyophilization of Protein-Loaded Polyelectrolyte Microcapsules. Pharm Res 28, 1765–1773 (2011). https://doi.org/10.1007/s11095-011-0411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0411-z

KEY WORDS

Navigation