Skip to main content

Advertisement

Log in

PLGA Microparticles Encapsulating Prostaglandin E1-Hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) Complex for the Treatment of Pulmonary Arterial Hypertension (PAH)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To test the efficacy and viability of poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating an inclusion complex of prostaglandin E1 (PGE1) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) for pulmonary delivery of PGE1 for treatment of pulmonary arterial hypertension (PAH), a disease of pulmonary circulation.

Methods

PLGA-based microparticulate formulations of PGE1-HPβCD inclusion complex or plain PGE1 were prepared by a double-emulsion solvent evaporation method. HPβCD was used as a complexing agent to increase the aqueous solubility of PGE1, act as a porosigen to produce large porous particles, and promote absorption of PGE1. Particles were characterized for micromeritic properties, in vivo absorption, metabolic degradation, and acute safety.

Results

Incorporation of HPβCD in the microparticles resulted in development of large particles with internal pores, which, despite large mean diameters, had aerodynamic diameters in the inhalable range of 1 to 5 μm. HPβCD incorporation also resulted in a significant increase in the amount of drug released in vitro in simulated interstitial lung fluid, showing a desirable burst release profile required for immediate hemodynamic effects. Compared to plain PLGA microparticles, entrapment efficiency was decreased upon complexation with HPβCD. In vivo absorption profile indicated prolonged availability of PGE1 in circulation following pulmonary administration of the optimized microparticulate formulations, with an extended half-life of almost 4 hours. Metabolic degradation and acute toxicity studies suggested that microparticulate formulations were stable under physiological conditions and safe for the lungs and respiratory epithelium.

Conclusions

This study demonstrates the feasibility of PGE1-HPβCD complex encapsulated in PLGA microparticles as a potential delivery system for controlled release of inhaled PGE1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev. 1999;36:125–41.

    Article  PubMed  CAS  Google Scholar 

  2. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86:147–62. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation.

    Article  PubMed  CAS  Google Scholar 

  3. Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36:30–42.

    Article  PubMed  CAS  Google Scholar 

  4. Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43:1451–9.

    Article  PubMed  CAS  Google Scholar 

  5. Jug M, Becirevic-Lacan M. Development of a cyclodextrin-based nasal delivery system for lorazepam. Drug Dev Ind Pharm. 2008;34:817–26.

    Article  PubMed  CAS  Google Scholar 

  6. Carpenter TO, Gerloczy A, Pitha J. Safety of parenteral hydroxypropyl beta-cyclodextrin. J Pharm Sci. 1995;84:222–5.

    Article  PubMed  CAS  Google Scholar 

  7. Kloeze J. Relationship between chemical structure and platelet-aggregation activity of prostaglandins. Biochim Biophys Acta. 1969;187:285–92.

    PubMed  CAS  Google Scholar 

  8. Sood BG, Delaney-Black V, Aranda JV, Shankaran S. Aerosolized PGE1: a selective pulmonary vasodilator in neonatal hypoxemic respiratory failure results of a Phase I/II open label clinical trial. Pediatr Res. 2004;56:579–85.

    Article  PubMed  CAS  Google Scholar 

  9. Wallace JL. Prostaglandins, NSAIDs, and cytoprotection. Gastroenterol Clin North Am. 1992;21:631–41.

    PubMed  CAS  Google Scholar 

  10. Della Rocca G, Coccia C, Pompei L, Costa MG, Di Marco P, Pietropaoli P. Inhaled aerosolized prostaglandin E1, pulmonary hemodynamics, and oxygenation during lung transplantation. Minerva Anestesiol. 2008;74:627–633.

    Google Scholar 

  11. Igarashi R, Takenaga M, Takeuchi J, Kitagawa A, Matsumoto K, Mizushima Y. Marked hypotensive and blood flow-increasing effects of a new lipo-PGE(1) (lipo-AS013) due to vascular wall targeting. J Control Release. 2001;71:157–64.

    Article  PubMed  CAS  Google Scholar 

  12. Nakazawa K, Uchida T, Matsuzawa Y, Yokoyama K, Makita K, Amaha K. Treatment of pulmonary hypertension and hypoxia due to oleic acid induced lung injury with intratracheal prostaglandin E1 during partial liquid ventilation. Anesthesiology. 1998;89:686–92.

    Article  PubMed  CAS  Google Scholar 

  13. Sakuma F, Miyata M, Kasukawa R. Suppressive effect of prostaglandin E1 on pulmonary hypertension induced by monocrotaline in rats. Lung. 1999;177:77–88.

    Article  PubMed  CAS  Google Scholar 

  14. Gu FG, Cui FD, Gao YL. Preparation of prostaglandin E1-hydroxypropyl-beta-cyclodextrin complex and its nasal delivery in rats. Int J Pharm. 2005;290:101–8.

    Article  PubMed  CAS  Google Scholar 

  15. Uekama K, Hieda Y, Hirayama F, Arima H, Sudoh M, Yagi A, et al. Stabilizing and solubilizing effects of sulfobutyl ether beta-cyclodextrin on prostaglandin E1 analogue. Pharm Res. 2001;18:1578–85.

    Article  PubMed  CAS  Google Scholar 

  16. Wiese M, Cordes HP, Chi H, Seydel JK, Backensfeld T, Muller BW. Interaction of prostaglandin E1 with alpha-cyclodextrin in aqueous systems: stability of the inclusion complex. J Pharm Sci. 1991;80:153–6.

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto M, Hirayama F, Uekama K. Improvement of stability and dissolution of prostaglandin E1 by maltosyl-beta-cyclodextrin in lyophilized formulation. Chem Pharm Bull Tokyo. 1992;40:747–51.

    PubMed  CAS  Google Scholar 

  18. Meyer J, Theilmeier G, Van Aken H, Bone HG, Busse H, Waurick R, et al. Inhaled prostaglandin E1 for treatment of acute lung injury in severe multiple organ failure. Anesth Analg. 1998;86:753–8.

    PubMed  CAS  Google Scholar 

  19. Gupta V, Rawat A, Ahsan F. Feasibility study of aerosolized prostaglandin E1 microspheres as a noninvasive therapy for pulmonary arterial hypertension. J Pharm Sci. 2010;99:1774–89.

    PubMed  CAS  Google Scholar 

  20. Marttin E, Verhoef JC, Merkus FW. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J Drug Target. 1998;6:17–36.

    Article  PubMed  CAS  Google Scholar 

  21. Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res. 2004;21:1127–36.

    Article  PubMed  CAS  Google Scholar 

  22. Bibby DC, Davies NM, Tucker IG. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int J Pharm. 2000;197:1–11.

    Article  PubMed  CAS  Google Scholar 

  23. De Rosa G, Larobina D, Immacolata La Rotonda M, Musto P, Quaglia F, Ungaro F. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-beta-cyclodextrin system. J Control Release. 2005;102:71–83.

    Article  PubMed  Google Scholar 

  24. Rawat A, Majumder QH, Ahsan F. Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation. J Control Release. 2008;128:224–32.

    Article  PubMed  CAS  Google Scholar 

  25. Ungaro F, d'Emmanuele di Villa Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135:25–34.

    Article  PubMed  CAS  Google Scholar 

  26. Gonda I. Physico-chemical principles in aerosol delivery. In D J A Crommelinand K.K. Midha (eds.), Topics in Pharmaceutical Sciences, Medpharm GmbH Scientific Publisher, Stuttgart, 1991, pp. 95–115.

  27. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30:1947–53.

    Article  PubMed  CAS  Google Scholar 

  28. Gill SK, Shobe AM, Hope-Weeks LJ. Synthesis of cobalt oxide aerogels and nanocomposite systems containing single-walled carbon nanotubes. Scanning. 2009;31:132–8.

    Article  PubMed  CAS  Google Scholar 

  29. Moss OR. Simulants of lung interstitial fluid. Health Phys. 1979;36:447–8.

    PubMed  CAS  Google Scholar 

  30. Hussain A, Majumder QH, Ahsan F. Inhaled insulin is better absorbed when administered as a dry powder compared to solution in the presence or absence of alkylglycosides. Pharm Res. 2006;23:138–47.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas C, Rawat A, Bai S, Ahsan F. Feasibility study of inhaled hepatitis B vaccine formulated with tetradecylmaltoside. J Pharm Sci. 2008;97:1213–23.

    Article  PubMed  CAS  Google Scholar 

  32. Nieminen AL, Gores GJ, Bond JM, Imberti R, Herman B, Lemasters JJ. A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol Appl Pharmacol. 1992;115:147–55.

    Article  PubMed  CAS  Google Scholar 

  33. Qian T, Nieminen AL, Herman B, Lemasters JJ. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol. 1997;273:C1783–92.

    PubMed  CAS  Google Scholar 

  34. Sarafian TA, Kouyoumjian S, Tashkin D, Roth MD. Synergistic cytotoxicity of Delta(9)-tetrahydrocannabinol and butylated hydroxyanisole. Toxicol Lett. 2002;133:171–9.

    Article  PubMed  CAS  Google Scholar 

  35. Zannou EA, Streng WH, Stella VJ. Osmotic properties of sulfobutylether and hydroxypropyl cyclodextrins. Pharm Res. 2001;18:1226–31.

    Article  PubMed  CAS  Google Scholar 

  36. Pistel KF, Kissel T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J Microencapsul. 2000;17:467–83.

    Article  PubMed  CAS  Google Scholar 

  37. Srinivasan C, Katare YK, Muthukumaran T, Panda AK. Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles. J Microencapsul. 2005;22:127–38.

    Article  PubMed  CAS  Google Scholar 

  38. Lee SC, Oh JT, Jang MH, Chung SI. Quantitative analysis of polyvinyl alcohol on the surface of poly(D, L-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. J Control Release. 1999;59:123–32.

    Article  PubMed  CAS  Google Scholar 

  39. Hassan MS, Lau R. Feasibility study of pollen-shape drug carriers in dry powder inhalation. J Pharm Sci. 2010;99:1309–21.

    PubMed  CAS  Google Scholar 

  40. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276:1868–71.

    Article  PubMed  CAS  Google Scholar 

  41. Jeong YI, Song JG, Kang SS, Ryu HH, Lee YH, Choi C, et al. Preparation of poly(DL-lactide-co-glycolide) microspheres encapsulating all-trans retinoic acid. Int J Pharm. 2003;259:79–91.

    Article  PubMed  CAS  Google Scholar 

  42. Ungaro F, De Rosa G, Miro A, Quaglia F, La Rotonda MI. Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur J Pharm Sci. 2006;28:423–32.

    Article  PubMed  CAS  Google Scholar 

  43. Jeyanthi R, Mehta RC, Thanoo BC, DeLuca PP. Effect of processing parameters on the properties of peptide-containing PLGA microspheres. J Microencapsul. 1997;14:163–74.

    Article  PubMed  CAS  Google Scholar 

  44. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  PubMed  Google Scholar 

  45. Nakano J, Prancan AV, Morsy NH. Metabolism of prostaglandin E1 in stomach, jejunum chyle and plasma of the dog and the rat. Jpn J Pharmacol. 1973;23:355–61.

    Article  PubMed  CAS  Google Scholar 

  46. Ney P, Braun M, Szymanski C, Bruch L, Schror K. Antiplatelet, antineutrophil and vasodilating properties of 13,14-dihydro-PGE1 (PGE0)–an in vivo metabolite of PGE1 in man. Eicosanoids. 1991;4:177–84.

    PubMed  CAS  Google Scholar 

  47. Henderson RF, Damon EG, Henderson TR. Early damage indicators in the the lung I. Lactate dehydrogenase activity in the airways. Toxicol Appl Pharmacol. 1978;44:291–7.

    Article  PubMed  CAS  Google Scholar 

  48. Hussain A, Ahsan F. State of insulin self-association does not affect its absorption from the pulmonary route. Eur J Pharm Sci. 2005;25:289–98.

    PubMed  CAS  Google Scholar 

  49. Beck BD, Brain JD, Bohannon DE. An in vivo hamster bioassay to assess the toxicity of particulates for the lungs. Toxicol Appl Pharmacol. 1982;66:9–29.

    Article  PubMed  CAS  Google Scholar 

  50. Matsukawa Y, Lee VH, Crandall ED, Kim KJ. Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J Pharm Sci. 1997;86:305–9.

    Article  PubMed  CAS  Google Scholar 

  51. Matilainen L, Toropainen T, Vihola H, Hirvonen J, Jarvinen T, Jarho P, et al. In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J Control Release. 2008;126:10–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors sincerely thank Mr. Charles Linch at the Department of Medical Photography and Electron Microscopy Texas Tech University Health Sciences Center, Lubbock, TX, for his help with the scanning electron microscopy experiments. This work was supported by an American Recovery and Reinvestment Act Fund, NIH 1R15HL103431 (FA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V., Davis, M., Hope-Weeks, L.J. et al. PLGA Microparticles Encapsulating Prostaglandin E1-Hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) Complex for the Treatment of Pulmonary Arterial Hypertension (PAH). Pharm Res 28, 1733–1749 (2011). https://doi.org/10.1007/s11095-011-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0409-6

KEY WORDS

Navigation