Skip to main content

Advertisement

Log in

Microemulsion Microstructure Influences the Skin Delivery of an Hydrophilic Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

We aimed to investigate the influence of microemulsion nanoscale organization as either oil-in-water droplets, water-in-oil droplets, or bicontinuous structures on skin delivery of drugs assisted by microemulsions.

Methods

Three microemulsions of different microstructure, o/w, w/o, and bicontinuous at the skin temperature (32°C), having the same oil and water contents and containing the same ingredients were selected using the Kahlweit fish phase diagrams method. The microemulsions are quaternary mixtures of the Polysorbate 21 (Tween®21) and Sorbitan monolaurate (Span®20) surfactants, isononyl isononanoate oil and water. The microemulsion nanostructure was characterized by electrical conductivity, Pulsed Field Gradient Spin-Echo NMR and Small-Angle Neutron Scattering measurements. The Franz cell method was used to monitor skin absorption of caffeine loaded in microemulsions over 24 h exposure to excised pig skin.

Results

Three microemulsions with the three structures were selected, keeping the same composition but the Tween®21/Span®20 ratio. The transdermal flux of caffeine was in the order aqueous solution ≈ w/o < bicontinuous < o/w microemulsion. The o/w microemulsion allows the permeation of 50% of the applied dose within 24 h.

Conclusions

The structure of microemulsions is of relevance for skin absorption. The water-continuous structures allow faster transport of hydrophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Heuschkel S, Goebel A, Neubert RHH. Microemulsions—Modern Colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97:603–31.

    Article  PubMed  CAS  Google Scholar 

  2. Gupta S, Moulik SP. Biocompatible microemulsions and their prospective uses in drug delivery. J Pharm Sci. 2008;97:22–45.

    Article  PubMed  CAS  Google Scholar 

  3. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci. 2006;123–126:369–85.

    Article  PubMed  Google Scholar 

  4. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54:S77–98.

    Article  PubMed  CAS  Google Scholar 

  5. Bolzinger MA, Briançon S, Pelletier J, Fessi H, Chevalier Y. Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms. Eur J Pharm Biopharm. 2008;68:446–51.

    Article  PubMed  CAS  Google Scholar 

  6. Sintov AC, Shapiro L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release. 2004;95:173–83.

    Article  PubMed  CAS  Google Scholar 

  7. Escribano E, Calpena AC, Queralt J, Obach R, Doménech J. Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula. Eur J Pharm Sci. 2003;19:203–10.

    Article  PubMed  CAS  Google Scholar 

  8. Kreilgaard M. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis. Pharm Res. 2001;18:367–75.

    Article  PubMed  CAS  Google Scholar 

  9. Kreilgaard M, Pederson EJ, Jarozewski W. NMR characterization and transdermal drug delivery potential of microemulsion systems. J Control Release. 2000;69:421–33.

    Article  PubMed  CAS  Google Scholar 

  10. Bolzinger-Thevenin MA, Carduner C, Poelman MC. Bicontinuous sucrose ester microemulsion: a new vehicle for topical delivery of niflumic acid. Int J Pharm. 1998;176:39–45.

    Article  Google Scholar 

  11. Hoar TP, Schulman JH. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature. 1943;152:102–3.

    Article  CAS  Google Scholar 

  12. Schubert KV, Kaler EW. Nonionic microemulsions. Ber Bunsenges Phys Chem. 1996;100:190–205.

    CAS  Google Scholar 

  13. Scriven LE. Equilibrium bicontinuous structure. Nature. 1976;263:123–5.

    Article  CAS  Google Scholar 

  14. Malcolmson C, Satra C, Kantaria S, Sidhu A, Lawrence MJ. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci. 1998;87:109–16.

    Article  PubMed  CAS  Google Scholar 

  15. Malcolmson C, Lawrence MJ. A comparison between nonionic micelles and microemulsions as a means of incorporating the poorly water soluble drug diazepam. J Pharm Pharmacol. 1990;Suppl 42:6P

    Google Scholar 

  16. Langevin D. Microemulsions - Interfacial aspects. Adv Colloid Interface Sci. 1991;34:583–95.

    Article  CAS  Google Scholar 

  17. Shinoda K, Kunieda H, Arai T, Saijo H. Principles of attaining very large solubilization (microemulsion): inclusive understanding of the solubilization of oil and water in aqueous and hydrocarbon media. J Phys Chem. 1984;88:5126–9.

    Article  CAS  Google Scholar 

  18. Kahlweit M, Strey R, Buse G. Microemulsions: a qualitative thermodynamic approach. J Phys Chem. 1990;94:3881–94.

    Article  CAS  Google Scholar 

  19. Laguës M, Ober R, Taupin C. Study of structure and electrical conductivity in microemulsions: evidence for percolation mechanism and phase inversion. J Phys Lett. 1978;39:L487–91.

    Article  Google Scholar 

  20. Laguës M, Sauterey C. Percolation transition in water in oil microemulsions. Electrical conductivity measurements. J Phys Chem. 1980;84:3503–8.

    Article  Google Scholar 

  21. Stilbs P, Lindman B. NMR measurements on microemulsions. Prog Colloid Polym Sci. 1984;69:39–47.

    CAS  Google Scholar 

  22. Lindman B, Olsson U. Structure of microemulsions studied by NMR. Ber Bunsenges Phys Chem. 1996;100:344–63.

    CAS  Google Scholar 

  23. Chevalier Y, Zemb T. The structure of micelles and microemulsions. Rep Prog Phys. 1990;53:279–371.

    Article  CAS  Google Scholar 

  24. Équipements expérimentaux du Laboratoire Léon Brillouin. LLB, CEN Saclay, F91191 Gif-sur-Yvette, France. (LLB is a CEA-CNRS laboratory). Available at: http://www-llb.cea.fr/index.html.

  25. Cotton JP. Initial data treatment. In: Lindner P, Zemb Th, editors. Neutron, X-ray and light scattering. Introduction to an investigative tool for colloidal and polymeric systems. Amsterdam: North-Holland; 1991. p. 19.

    Google Scholar 

  26. NF T 20–043 AFNOR (1985). Chemical products for industrial use - Determination of partition coefficient - Shake flask method.

  27. Winsor PA. Hydrotropy, solubilisation and related emulsification processes. Trans Faraday Soc. 1948;44:376–98.

    Article  CAS  Google Scholar 

  28. Saito H, Shinoda K. The stability of w/o type emulsions as a function of temperature and of the hydrophilic chain length of the emulsifier. J Colloid Interface Sci. 1970;32:647–51.

    Article  CAS  Google Scholar 

  29. Teubner M, Strey R. Origin of the scattering peak in microemulsions. J Chem Phys. 1987;87:3195–200.

    Article  CAS  Google Scholar 

  30. Frelichowska J, Bolzinger M-A, Valour J-P, Mouaziz H, Pelletier J, Chevalier Y. Pickering w/o emulsions: drug release and topical delivery. Int J Pharm. 2009;368:7–15.

    Article  PubMed  CAS  Google Scholar 

  31. Djordjevic L, Primorac M, Stupar M. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions. Int J Pharm. 2005;296:73–9.

    Article  PubMed  CAS  Google Scholar 

  32. Liu H, Li S, Wang Y, Han F, Dong Y. Bicontinuous water-AOT/Tween85-isopropyl myristate microemulsion: a new vehicle for transdermal delivery of cyclosporin A. Drug Dev Ind Pharm. 2006;32:549–57.

    Article  PubMed  CAS  Google Scholar 

  33. Yuan JS, Ansari M, Samaan M, Acosta EJ. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int J Pharm. 2008;349:130–43.

    Article  PubMed  CAS  Google Scholar 

  34. Lee J, Lee Y, Kim J, Yoon M, Choi YW. Formulation of microemulsion systems for transdermal delivery of aceclofenac. Arch Pharm Res. 2005;28:1097–102.

    Article  PubMed  CAS  Google Scholar 

  35. Osborne DW, Ward AJI, O’Neill KJ. Microemulsions as topical drug delivery vehicles: in-vitro transdermal studies of a model hydrophilic drug. J Pharm Pharmacol. 1991;43:451–4.

    Article  CAS  Google Scholar 

  36. Changez M, Varshney M, Chander J, Dinda AK. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: in vitro. Colloid Surf B Biointerfaces. 2006;50:18–25.

    Article  CAS  Google Scholar 

  37. Lee PH, Langer R, Shastri VP. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs. Pharm Res. 2003;20:264–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kahlweit M, Stey R, Haase D, Kuneida H, Schmeling T, Faulhaber B, et al. How to study microemulsions. J Colloid Interface Sci. 1987;118:436–53.

    Article  CAS  Google Scholar 

  39. Hua L, Weisan P, Jiayu L, Ying Z. Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm. 2004;30:657–66.

    Article  PubMed  CAS  Google Scholar 

  40. Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228:161–70.

    Article  PubMed  CAS  Google Scholar 

  41. Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98:427–36.

    Article  PubMed  CAS  Google Scholar 

  42. López A, Llinares F, Cortell C, Herráez M. Comparative enhancer effects of Span®20 with Tween®20 and Azone® on the in vitro percutaneous penetration of compounds with different lipophilicities. Int J Pharm. 2000;202:133–40.

    Article  PubMed  Google Scholar 

  43. Cappel MJ, Kreuter J. Effect of non-ionic surfactants on transdermal drug delivery: I. polysorbates. Int J Pharm. 1991;69:143–53.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a grant PHC Utique n°08G1106 for French-Tunisian cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Alexandrine Bolzinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naoui, W., Bolzinger, MA., Fenet, B. et al. Microemulsion Microstructure Influences the Skin Delivery of an Hydrophilic Drug. Pharm Res 28, 1683–1695 (2011). https://doi.org/10.1007/s11095-011-0404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0404-y

KEY WORDS

Navigation