Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Modeling of the Inhibitory Effects of Naproxen on the Time-Courses of Inflammatory Pain, Fever, and the Ex Vivo Synthesis of TXB2 and PGE2 in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To quantify and compare the time-course and potency of the analgesic and antipyretic effects of naproxen in conjunction with the inhibition of PGE2 and TXB2.

Methods

Analgesia was investigated in a rat model with carrageenan-induced arthritis using a gait analysis method. Antipyretics were studied in a yeast-induced fever model using telemetrically recorded body temperature. Inhibition of TXB2 and PGE2 synthesis was determined ex vivo. Pharmacokinetic profiles were obtained in satellite animals. Population PKPD modeling was used to analyze the data.

Results

The IC50 values (95% CI) of naproxen for analgesia (27 (0–130) μM), antipyretics (40 (30–65) μM) and inhibition of PGE2 (13 (6–45) μM) were in similar range, whereas inhibition of TXB2 (5 (4–8) μM) was observed at lower concentrations. Variability in the behavioral measurement of analgesia was larger than for the other endpoints. The inhibition of fever by naproxen was followed by an increased rebound body temperature.

Conclusion

Due to better sensitivity and similar drug-induced inhibition, the biomarker PGE2 and the antipyretic effect would be suitable alternative endpoints to the analgesic effects for characterization and comparisons of potency and time-courses of drug candidates affecting the COX-2 pathway and to support human dose projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COX:

cyclooxygenase

CV%:

coefficient of variation

LPS:

lipopolysaccharide

NSAIDs:

nonsteroidal anti-inflammatory drugs

PGE2 :

prostaglandin E2

TXB2 :

thromboxane B2

REFERENCES

  1. Whiteside GT, Adedoyin A, Leventhal L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology. 2008;54(5):767–75.

    Article  PubMed  CAS  Google Scholar 

  2. Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D. Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther. 2006;319(2):507–14.

    Article  PubMed  CAS  Google Scholar 

  3. Mukherjee A, Hale VG, Borga O, Stein R. Predictability of the clinical potency of NSAIDs from the preclinical pharmacodynamics in rats. Inflamm Res. 1996;45(11):531–40.

    Article  PubMed  CAS  Google Scholar 

  4. Huntjens DR, Spalding DJ, Danhof M, Della Pasqua OE. Differences in the sensitivity of behavioural measures of pain to the selectivity of cyclo-oxygenase inhibitors. Eur J Pain. 2009;13(5):448–57.

    Article  PubMed  CAS  Google Scholar 

  5. Sultana SR, Roblin D, O’Connell D. Translational research in the pharmaceutical industry: from theory to reality. Drug Discov Today. 2007;12(9–10):419–25.

    Article  PubMed  CAS  Google Scholar 

  6. Colburn WA, Lee JW. Biomarkers, validation and pharmacokinetic-pharmacodynamic modelling. Clin Pharmacokinet. 2003;42(12):997–1022.

    Article  PubMed  CAS  Google Scholar 

  7. Vardeh D, Wang D, Costigan M, et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest. 2009;119(2):287–94.

    PubMed  CAS  Google Scholar 

  8. Zhang Y, Shaffer A, Portanova J, Seibert K, Isakson PC. Inhibition of cyclooxygenase-2 rapidly reverses inflammatory hyperalgesia and prostaglandin E2 production. J Pharmacol Exp Ther. 1997;283(3):1069–75.

    PubMed  CAS  Google Scholar 

  9. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A. 1994;91(25):12013–7.

    Article  PubMed  CAS  Google Scholar 

  10. Warner TD, Vojnovic I, Bishop-Bailey D, Mitchell JA. Influence of plasma protein on the potencies of inhibitors of cyclooxygenase-1 and -2. FASEB J. 2006;20(14):542–4.

    PubMed  CAS  Google Scholar 

  11. Huntjens DR, Danhof M, Della Pasqua OE. Pharmacokinetic-pharmacodynamic correlations and biomarkers in the development of COX-2 inhibitors. Rheumatology (Oxford). 2005;44(7):846–59.

    Article  CAS  Google Scholar 

  12. Brideau C, Kargman S, Liu S, et al. A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors. Inflamm Res. 1996;45(2):68–74.

    Article  PubMed  CAS  Google Scholar 

  13. Tomazetti J, Avila DS, Ferreira AP, et al. Baker yeast-induced fever in young rats: characterization and validation of an animal model for antipyretics screening. J Neurosci Methods. 2005;147(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  14. Arrigoni-Martelli E. Screening and assessment of antiinflammatory drugs. Methods Find Exp Clin Pharmacol. 1979;1(3):157–77.

    PubMed  CAS  Google Scholar 

  15. Vrinten DH, Hamers FF. ‘CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain. 2003;102(1–2):203–9.

    Article  PubMed  Google Scholar 

  16. Angeby-Moller K, Berge OG, Hamers FP. Using the CatWalk method to assess weight-bearing and pain behaviour in walking rats with ankle joint monoarthritis induced by carrageenan: effects of morphine and rofecoxib. J Neurosci Methods. 2008;174(1):1–9.

    Article  PubMed  Google Scholar 

  17. Garrett ER. The Bateman function revisited: a critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. J Pharmacokinet Biopharm. 1994;22(2):103–28.

    Article  PubMed  CAS  Google Scholar 

  18. Visser SA, Sallstrom B, Forsberg T, Peletier LA, Gabrielsson J. Modeling drug- and system-related changes in body temperature: application to clomethiazole-induced hypothermia, long-lasting tolerance development, and circadian rhythm in rats. J Pharmacol Exp Ther. 2006;317(1):209–19.

    Article  PubMed  CAS  Google Scholar 

  19. Sharma A, Ebling WF, Jusko WJ. Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci. 1998;87(12):1577–84.

    Article  PubMed  CAS  Google Scholar 

  20. Huntjens DR, Spalding DJ, Danhof M, Della Pasqua OE. Correlation between in vitro and in vivo concentration-effect relationships of naproxen in rats and healthy volunteers. Br J Pharmacol. 2006;148(4):396–404.

    Article  PubMed  CAS  Google Scholar 

  21. Josa M, Urizar JP, Rapado J, et al. Pharmacokinetic/pharmacodynamic modeling of antipyretic and anti-inflammatory effects of naproxen in the rat. J Pharmacol Exp Ther. 2001;297(1):198–205.

    PubMed  CAS  Google Scholar 

  22. Runkel R, Chaplin M, Boost G, Segre E, Forchielli E. Absorption, distribution, metabolism, and excretion of naproxen in various laboratory animals and human subjects. J Pharm Sci. 1972;61(5):703–8.

    Article  PubMed  CAS  Google Scholar 

  23. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet. 1997;32(4):268–93.

    Article  PubMed  CAS  Google Scholar 

  24. Moyer S. Pharmacokinetics of naproxen sodium. Cephalalgia. 1986;6 Suppl 4:77–80.

    PubMed  Google Scholar 

  25. Ismail S, Back DJ, Edwards G. The effect of malaria infection on 3′-azido-3′-deoxythymidine and paracetamol glucuronidation in rat liver microsomes. Biochem Pharmacol. 1992;44(9):1879–82.

    Article  PubMed  CAS  Google Scholar 

  26. Song CS, Gelb NA, Wolff SM. The influence of pyrogen-induced fever on salicylamide metabolism in man. J Clin Invest. 1972;51(11):2959–66.

    Article  PubMed  CAS  Google Scholar 

  27. Santos FA, Rao VS. A study of the anti-pyretic effect of quinine, an alkaloid effective against cerebral malaria, on fever induced by bacterial endotoxin and yeast in rats. J Pharm Pharmacol. 1998;50(2):225–9.

    Article  PubMed  CAS  Google Scholar 

  28. Bruguerolle B, Roucoules X. Time-dependent changes in body temperature rhythm induced in rats by brewer’s yeast injection. Chronobiol Int. 1994;11(3):180–6.

    Article  PubMed  CAS  Google Scholar 

  29. Refinetti R, Ma H, Satinoff E. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp Gerontol. 1990;25(6):533–43.

    Article  PubMed  CAS  Google Scholar 

  30. Dogan MD, Ataoglu H, Akarsu ES. Characterization of the hypothermic component of LPS-induced dual thermoregulatory response in rats. Pharmacol Biochem Behav. 2002;72(1–2):143–50.

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura H, Mizushima Y, Seto Y, Motoyoshi S, Kadokawa T. Dexamethasone fails to produce antipyretic and analgesic actions in experimental animals. Agents Actions. 1985;16(6):542–7.

    Article  PubMed  CAS  Google Scholar 

  32. Blatteis CM. Endotoxic fever: new concepts of its regulation suggest new approaches to its management. Pharmacol Ther. 2006;111(1):194–223.

    Article  PubMed  CAS  Google Scholar 

  33. Steiner AA, Ivanov AI, Serrats J, et al. Cellular and molecular bases of the initiation of fever. PLoS Biol. 2006;4(9):e284.

    Article  PubMed  Google Scholar 

  34. Romanovsky AA, Almeida MC, Aronoff DM, et al. Fever and hypothermia in systemic inflammation: recent discoveries and revisions. Front Biosci. 2005;10:2193–216.

    Article  PubMed  CAS  Google Scholar 

  35. Ross G, Hubschle T, Pehl U, et al. Fever induction by localized subcutaneous inflammation in guinea pigs: the role of cytokines and prostaglandins. J Appl Physiol. 2003;94(4):1395–402.

    PubMed  CAS  Google Scholar 

  36. Bueters TJ, Hoogstraate J, Visser SA. Correct assessment of new compounds using in vivo screening models can reduce false positives. Drug Discov Today. 2008;14(1–2):89–94.

    PubMed  Google Scholar 

  37. Romanovsky AA, Kulchitsky VA, Simons CT, Sugimoto N. Methodology of fever research: why are polyphasic fevers often thought to be biphasic? Am J Physiol. 1998;275(1 Pt 2):R332–8.

    PubMed  CAS  Google Scholar 

  38. Romanovsky AA, Blatteis CM. Biphasic fever: what triggers the second temperature rise? Am J Physiol. 1995;269(2 Pt 2):R280–6.

    PubMed  CAS  Google Scholar 

  39. Capone ML, Tacconelli S, Sciulli MG, et al. Human pharmacology of naproxen sodium. J Pharmacol Exp Ther. 2007;322(2):453–60.

    Article  PubMed  CAS  Google Scholar 

  40. Warner TD, Guiliano F, Vojnovic I, Bukasa A, Mitchell JA. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96(13):7563–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Lars I. Andersson for help with TXB2 & PGE2 assays, Ulrika Määttä for assisting with biomarker sampling and Kristina Brunfelter, Sveinn Briem, Yvonne Jaksch, and Jonas Malmberg for help with the various bioanalyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra A. G. Visser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekels, E.H.J., Angesjö, M., Sjögren, I. et al. Pharmacokinetic-Pharmacodynamic Modeling of the Inhibitory Effects of Naproxen on the Time-Courses of Inflammatory Pain, Fever, and the Ex Vivo Synthesis of TXB2 and PGE2 in Rats. Pharm Res 28, 1561–1576 (2011). https://doi.org/10.1007/s11095-011-0389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0389-6

KEY WORDS

Navigation