Skip to main content
Log in

Effect of Sugar Molecules on the Viscosity of High Concentration Monoclonal Antibody Solutions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To assess the effect of sugar molecules on solution viscosity at high protein concentrations.

Methods

A high throughput dynamic light scattering method was used to measure the viscosity of monoclonal antibody solutions. The effects of protein concentration, type of sugar molecule (trehalose, sucrose, sorbitol, glucose, fructose, xylose and galactose), temperature and ionic strength were evaluated. Differential scanning fluorimetry was used to reveal the effect of the same sugars on protein stability and to provide insight into the mechanism by which sugars increase viscosity.

Results

The addition of all seven types of sugar molecules studied result in a significant increase in viscosity of high concentration monoclonal antibody solutions. Similar effects of sugars were observed in the two mAbs examined; viscosity could be reduced by increasing the ionic strength or temperature. The effect by sugars was enhanced at higher protein concentrations.

Conclusions

Disaccharides have a greater effect on the solution viscosity at high protein concentrations compared to monosaccharides. The effect may be explained by commonly accepted mechanisms of interactions between sugar and protein molecules in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cP:

centipoise

DLS:

dynamic light scattering

DSF:

differential scanning fluorimetry

Igg:

Immunoglobulin G

mAb:

monoclonal antibody

REFERENCES

  1. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23:1073–8.

    Article  PubMed  CAS  Google Scholar 

  2. Shire SJ. Formulation and manufacturability of biologics. Curr Opin Biotechnol. 2009;20:708–14.

    Article  PubMed  CAS  Google Scholar 

  3. Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci. 2008;97:4219–27.

    Article  PubMed  CAS  Google Scholar 

  4. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94:1928–40.

    Article  PubMed  CAS  Google Scholar 

  5. Saluja A, Kalonia DS. Nature and consequences of protein-protein interactions in high protein concentration solutions. Int J Pharm. 2008;358:1–15.

    Article  PubMed  CAS  Google Scholar 

  6. Fesinmeyer RM, Hogan S, Saluja A, Brych SR, Kras E, Narhi LO, et al. Effect of ions on agitation- and temperature-induced aggregation reactions of antibodies. Pharm Res. 2009;26:903–13.

    Article  PubMed  CAS  Google Scholar 

  7. Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci. 2010;99:82–93.

    Article  PubMed  CAS  Google Scholar 

  8. Banks DD, Hambly DM, Scavezze JL, Siska CC, Stackhouse NL, Gadgil HS. The effect of sucrose hydrolysis on the stability of protein therapeutics during accelerated formulation studies. J Pharm Sci. 2009;98:4501–10.

    Article  PubMed  CAS  Google Scholar 

  9. Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry. 1982;21:6536–44.

    Article  PubMed  CAS  Google Scholar 

  10. Timasheff SN. Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry. 2002;41:13473–82.

    Article  PubMed  CAS  Google Scholar 

  11. Timasheff SN. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci USA. 2002;99:9721–6.

    Article  PubMed  CAS  Google Scholar 

  12. Timasheff SN, Xie G. Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys Chem. 2003;105:421–48.

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez C, Minton AP. Static light scattering from concentrated protein solutions II: experimental test of theory for protein mixtures and weakly self-associating proteins. Biophys J. 2009;96:1992–8.

    Article  PubMed  CAS  Google Scholar 

  14. Saluja A, Badkar AV, Zeng DL, Nema S, Kalonia DS. Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements. Biophys J. 2007;92:234–44.

    Article  PubMed  CAS  Google Scholar 

  15. Minton AP. Static light scattering from concentrated protein solutions. I: general theory for protein mixtures and application to self-associating proteins. Biophys J. 2007;93:1321–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bulychev A, Mobashery S. Class C beta-lactamases operate at the diffusion limit for turnover of their preferred cephalosporin substrates. Antimicrob Agents Chemother. 1999;43:1743–6.

    PubMed  CAS  Google Scholar 

  17. Sengerova B, Tomlinson C, Atack JM, Williams R, Sayers JR, Williams NH, et al. Bronsted analysis and rate-limiting steps for the T5 flap endonuclease catalyzed hydrolysis of exonucleolytic substrates. Biochemistry. 2010;49:8085–93.

    Article  PubMed  CAS  Google Scholar 

  18. Patapoff TW, Esue O. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear. Pharm Dev Technol. 2009;14:659–64.

    Article  PubMed  CAS  Google Scholar 

  19. Esnaashari S, Javadzadeh Y, Batchelor HK, Conway BR. The use of microviscometry to study polymer dissolution from solid dispersion drug delivery systems. Int J Pharm. 2005;292:227–30.

    Article  PubMed  CAS  Google Scholar 

  20. Redford SJ, Dickinson E, Golding M. Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and alcohol. J Colloid Interface Sci. 2003;274:673–86.

    Article  Google Scholar 

  21. He F, Becker GW, Litowski JR, Narhi LO, Brems DN, Razinkov VI. High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem. 2010;399:141–3.

    Article  PubMed  CAS  Google Scholar 

  22. de Smidt JH, Crommelin DJA. Viscosity measurement in aqueous polymer solutions by dynamic light scattering. Int J Pharm. 1991;77:261–4.

    Article  Google Scholar 

  23. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D. Downstream processing of monoclonal antibodies–application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848:28–39.

    Article  PubMed  CAS  Google Scholar 

  24. He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI. High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci. 2010;99:1707–20.

    PubMed  CAS  Google Scholar 

  25. Chenlo F, Moreira R, Pereira G, Ampudia A. Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes. J Food Eng. 2002;54:347–52.

    Article  Google Scholar 

  26. Monkos K, Turczynski B. A comparative study on viscosity of human, bovine and pig IgG immunoglobulins in aqueous solutions. Int J Biol Macromol. 1999;26:155–9.

    Article  PubMed  CAS  Google Scholar 

  27. Parmar AS, Muschol M. Lysozyme as diffusion tracer for measuring aqueous solution viscosity. J Colloid Interface Sci. 2009;339:243–8.

    Article  PubMed  CAS  Google Scholar 

  28. Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. Biophys J. 1985;47:411–4.

    Article  PubMed  CAS  Google Scholar 

  29. Khan RH, Shabnum MS. Effect of sugars on rabbit serum albumin stability and induction of secondary structure. Biochemistry (Mosc). 2001;66:1042–6.

    Article  CAS  Google Scholar 

  30. Kim YS, Jones LS, Dong A, Kendrick BS, Chang BS, Manning MC, et al. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci. 2003;12:1252–61.

    Article  PubMed  CAS  Google Scholar 

  31. Xie G, Timasheff SN. Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured then for the native protein. Protein Sci. 1997;6:211–21.

    Article  PubMed  CAS  Google Scholar 

  32. Gekko K, Morikawa T. Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures. J Biochem. 1981;90:39–50.

    PubMed  CAS  Google Scholar 

  33. Kendrick BS, Chang BS, Arakawa T, Peterson B, Randolph TW, Manning MC, et al. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc Natl Acad Sci USA. 1997;94:11917–22.

    Article  PubMed  CAS  Google Scholar 

  34. Xie G, Timasheff SN. The thermodynamic mechanism of protein stabilization by trehalose. Biophys Chem. 1997;64:25–43.

    Article  PubMed  CAS  Google Scholar 

  35. Xie G, Timasheff SN. Temperature dependence of the preferential interactions of ribonuclease A in aqueous co-solvent systems: thermodynamic analysis. Protein Sci. 1997;6:222–32.

    Article  PubMed  CAS  Google Scholar 

  36. Shimizu S, Smith DJ. Preferential hydration and the exclusion of cosolvents from protein surfaces. J Chem Phys. 2004;121:1148–54.

    Article  PubMed  CAS  Google Scholar 

  37. Gokarn YR, Fesinmeyer RM, Saluja A, Cao S, Dankberg J, Goetze A, et al. Ion-specific modulation of protein interactions: anion-induced, reversible oligomerization of a fusion protein. Protein Sci. 2009;18:169–79.

    PubMed  CAS  Google Scholar 

  38. Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99:1152–68.

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Annunziata O. Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J Phys Chem B. 2007;111:1222–30.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful towards Fan Zhang and Dr. Jeremy Guo for supplying research materials. The authors would also like to thank Drs. R. Matthew Fesinmeyer, Gerald Becker, Linda Narhi, David Brems, and Michael Treuheit for critical reviews and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng He or Bruce A. Kerwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, F., Woods, C.E., Litowski, J.R. et al. Effect of Sugar Molecules on the Viscosity of High Concentration Monoclonal Antibody Solutions. Pharm Res 28, 1552–1560 (2011). https://doi.org/10.1007/s11095-011-0388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0388-7

KEY WORDS

Navigation