Synthesis of Temperature-Responsive Dextran-MA/PNIPAAm Particles for Controlled Drug Delivery Using Superhydrophobic Surfaces

ABSTRACT

Purpose

To implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydrogel beads in which the bioactive substance is introduced in the particles during their formation.

Methods

Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed by photo-crosslinked dextran-methacrylated and thermal responsive poly(N-isopropylacrylamide) mixed with a protein (insulin or albumin) were dropped on the superhydrophobic surfaces, and the obtained millimetric spheres were hardened in a dry environment under UV light.

Results

Spherical and non-sticky hydrogels particles were formed in few minutes on the superhydrophobic surfaces. The proteins included in the liquid formulation were homogeneously distributed in the particle network. The particles exhibited temperature-sensitive swelling, porosity and protein release rate, with the responsiveness tunable by the dextran-MA/PNIPAAm weight ratio.

Conclusions

The proposed method permitted the preparation of smart hydrogel particles in one step with almost 100% encapsulation yield. The temperature-sensitive release profiles suggest that the obtained spherical-shaped biomaterials are suitable as protein carriers. These stimuli-responsive beads could have potential to be used in pharmaceutical or other biomedical applications, including tissue engineering and regenerative medicine.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. 1.

    Goldberg M, Langer R, Jia XQ. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241–68.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Yang LB, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235(1–2):1–15.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345–60.

    Article  CAS  Google Scholar 

  4. 4.

    Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci. 2007;32(7):669–97.

    Article  CAS  Google Scholar 

  5. 5.

    Kim S, Kim JH, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71(3):420–30.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Kopecek J. Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci. 2003;20(1):1–16.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Yeo Y, Baek N, Park K. Microencapsulation methods for delivery of protein drugs. Biotechnol Bioprocess Eng. 2001;6(4):213–30.

    Article  CAS  Google Scholar 

  8. 8.

    Gillot S, inventor Chia-based fatty acids food product, rich in omega-3, with good stability. Patent WO/2010/012320. 2010.

  9. 9.

    O’Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28(1):25–42.

    PubMed  Article  Google Scholar 

  10. 10.

    Guo Z, Liu W, Su B-L. Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science. In Press, Corrected Proof.

  11. 11.

    Song W, Lima AC, Mano JF. Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter. 2010;6(23):5868–71.

    Article  CAS  Google Scholar 

  12. 12.

    Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1–2):19–38.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4(17):999–1030.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kim DJ, Heo JY, Kim KS, Choi IS. Formation of thermoresponsive poly(nisopropylacrylamide)/dextran particles by atom transfer radical polymerization. Macromol Rapid Commun. 2003;24(8):517–21.

    Article  Google Scholar 

  16. 16.

    Kim IS, Jeong YI, Kim DH, Lee KH, Kim SH. Albumin release from biodegradable hydrogels composed of dextran and poly(ethylene glycol) macromer. Arch Pharm Res. 2001;24(1):69–73.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Crepon B, Jozefonvicz J, Chytry V, Rihova B, Kopecek J. Enzymatic degradation and immunogenic properties of derivatized dextrans. Biomaterials. 1991;12(6):550–4.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Kim SH, Chu CC. Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM. J Biomed Mater Res. 2000;49(4):517–27.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Zhang JT, Petersen S, Thunga M, Leipold E, Weidisch R, Liu XL, et al. Micro-structured smart hydrogels with enhanced protein loading and release efficiency. Acta Biomater. 2009;6(4):1297–306.

    PubMed  Article  Google Scholar 

  20. 20.

    Santos JR, Alves NM, Mano JF. New thermo-responsive hydrogels based on poly (N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym. 2010;25(2):169–84.

    Article  CAS  Google Scholar 

  21. 21.

    Shi J, Alves NM, Mano JF. Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi-IPN beads. Macromol Biosci. 2006;6(5):358–63.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Shin BC, Jhon MS, Lee HB, Yuk SH. pH/temperature dependent phase transition of an interpenetrating polymer network: anomalous swelling behavior above lower critical solution temperature. Eur Polym J. 1998;34(11):1675–81.

    Article  CAS  Google Scholar 

  23. 23.

    Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release. 2005;102(3):629–41.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Erbil HY, Demirel AL, Avci Y, Mert O. Transformation of a simple plastic into a superhydrophobic surface. Science. 2003;299(5611):1377–80.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Oliveira NM, Neto AI, Song W, Mano JF. Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surfaces. Appl Phys Express. 2010;3.

  26. 26.

    Song WL, Veiga DD, Custodio CA, Mano JF. Bioinspired degradable substrates with extreme wettability properties. Adv Mater. 2009;21(18):1830.

    Article  CAS  Google Scholar 

  27. 27.

    Yao X, Chen QW, Xu L, Li QK, Song YL, Gao XF, et al. Bioinspired ribbed nanoneedles with robust superhydrophobicity. Adv Funct Mater. 2010;20(4):656–62.

    Article  CAS  Google Scholar 

  28. 28.

    Qian BT, Shen ZQ. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir. 2005;21(20):9007–9.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    van Dijk-Wolthuis WNE, Franssen O, Talsma H, van Steenbergen MJ, Kettenes-van den Bosch JJ, Hennink WE. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules. 1995;28(18):6317–22.

    Article  Google Scholar 

  30. 30.

    Reis AV, Fajardo AR, Schuquel ITA, Guilherme MR, Vidotti GJ, Rubira AF, et al. Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly(vinyl alcohol) and poly(acrylic acid): is this reaction mechanism still unclear? J Org Chem. 2009;74(10):3750–7.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Yuan ZQ, Chen H, Tang JX, Chen X, Zhao DJ, Wang ZX. Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surf Coat Technol. 2007;201(16–17):7138–42.

    Article  CAS  Google Scholar 

  32. 32.

    Zhao N, Xu J, Xie Q, Weng L, Guo X, Zhang X, et al. Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromol Rapid Commun. 2005;26(13):1075–80.

    Article  CAS  Google Scholar 

  33. 33.

    de Givenchy EPT, Amigoni S, Martin C, Andrada G, Caillier L, Geribaldi S, et al. Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers. Langmuir. 2009;25(11):6448–53.

    PubMed  Article  Google Scholar 

  34. 34.

    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–39.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Shi J, Alves NM, Mano JF. Chitosan coated alginate beads containing poly(N-isopropylacrylamide) for dual-stimuli-responsive drug release. J Biomed Mater Res B. 2008;84B(2):595–603.

    Article  CAS  Google Scholar 

  36. 36.

    Shi J, Liu LH, Sun XM, Cao SK, Mano JF. Biomineralized polysaccharide beads for dual-stimuli-responsive drug delivery. Macromol Biosci. 2008;8(3):260–7.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, et al. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules. 2009;10(6):1392–401.

    PubMed  Article  Google Scholar 

  38. 38.

    Pitarresi G, Palumbo FS, Giammona G, Casadei MA, Moracci FM. Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives. Biomaterials. 2003;24(23):4301–13.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Zhang XZ, Wu DQ, Chu CC. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials. 2004;25(19):4719–30.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Zhang J, Peppas NA. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules. 1999;33(1):102–7.

    Article  Google Scholar 

  41. 41.

    Kim SH, Chu CC. Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. J Biomed Mater Res. 2000;53(3):258–66.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Piai JF, de Moura MR, Rubira AF, Muniz EC. Kinetic study of bovine serum albumin (BSA) released from alginate-Ca2+/PNIPAAm hydrogels. Macromol Symp. 2008;266(1):108–13.

    Article  CAS  Google Scholar 

  43. 43.

    de Moura MR, Aouada FA, Favaro SL, Radovanovic E, Rubira AF, Muniz EC. Release of BSA from porous matrices constituted of alginate-Ca2+ and PNIPAAm-interpenetrated networks. Mater Sci Eng C Mater Biol Appl. 2009;29(8):2319–25.

    Article  Google Scholar 

  44. 44.

    Naddaf AA, Tsibranska I, Bart HJ. Kinetics of BSA release from poly(N-isopropylacrylamide) hydrogels. Chem Eng Process. 2010;49(6):581–8.

    CAS  Google Scholar 

  45. 45.

    Wu J-Y, Liu S-Q, Heng PW-S, Yang Y-Y. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J Control Release. 2005;102(2):361–72.

    PubMed  Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge funding from the project: PTDC/QUI/68804/2006 (FCT), IBEROMARE-Procept, FEDER and MICINN (SAF2008-01679). The research leading to these results has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement #NMP4-SL-2009-229292. The authors are grateful to project DISC REGENERATION, Collaborative Project—Large-scale integrating project, NMP3-LA-2008-213904 for the use of the UV lamp.

Author information

Affiliations

Authors

Corresponding author

Correspondence to João F. Mano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lima, A.C., Song, W., Blanco-Fernandez, B. et al. Synthesis of Temperature-Responsive Dextran-MA/PNIPAAm Particles for Controlled Drug Delivery Using Superhydrophobic Surfaces. Pharm Res 28, 1294–1305 (2011). https://doi.org/10.1007/s11095-011-0380-2

Download citation

KEY WORDS

  • biomimetics
  • delivery systems
  • dextran-methacrylate
  • encapsulation methods
  • inter-penetrated networks
  • PNIPAAm
  • smart systems
  • superhydrophobic surfaces