Skip to main content
Log in

A Novel Peptide Nanomedicine Against Acute Lung Injury: GLP-1 in Phospholipid Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Treatment of acute lung injury (ALI) observed in Gram-negative sepsis represents an unmet medical need due to a high mortality rate and lack of effective treatment. Accordingly, we developed and characterized a novel nanomedicine against ALI. We showed that when human glucagon-like peptide 1(7–36) (GLP-1) self-associated with PEGylated phospholipid micelles (SSM), the resulting GLP1-SSM (hydrodynamic size, ~15 nm) exerted effective anti-inflammatory protection against lipopolysaccharide (LPS)-induced ALI in mice.

Methods

GLP1-SSM was prepared by incubating GLP-1 with SSM dispersion in saline and characterized using fluorescence spectroscopy and circular dichroism. Bioactivity was tested by in vitro cAMP induction, while in vivo anti-inflammatory effects were determined by lung neutrophil cell count, myeloperoxidase activity and pro-inflammatory cytokine levels in LPS-induced ALI mice.

Results

Amphipathic GLP-1 interacted spontaneously with SSM as indicated by increased α-helicity and fluorescence emission. This association elicited increased bioactivity as determined by in vitro cAMP production. Correspondingly, subcutaneous GLP1-SSM (5–30 nmol/mouse) manifested dose-dependent decrease in lung neutrophil influx, myeloperoxidase activity and interleukin-6 in ALI mice. By contrast, GLP-1 in saline showed no significant anti-inflammatory effects against LPS-induced lung hyper-inflammatory responses.

Conclusions

GLP1-SSM is a promising novel anti-inflammatory nanomedicine against ALI and should be further developed for its transition to clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALI:

acute lung injury

ANOVA:

analysis of variance

ARDS:

acute respiratory distress syndrome

BALF:

bronchoalveolar lavage fluid

cAMP:

cyclic adenosine monophosphate

CD:

circular dichroism

CMC:

critical micelle concentration

DPP-4:

dipeptidyl peptidase-4

DSPE-PEG2000 :

distearoyl phosphatidylethanolamine-polyethylene glycol2000

ELISA:

enzyme-linked immunosorbent assay

FBS:

fetal bovine serum

GLP-1:

glucagon-like peptide 1 (7–36)

GLP-1R:

GLP-1 receptor

GLP1-SSM:

GLP-1 peptide self-associated to SSM

HTAB:

hexadecyltrimethylammonium bromide

IBMX:

3-isobutyl-1-methylxanthine

IL-6:

interleukin-6

LPS:

lipopolysaccharide

MPO:

myeloperoxidase

PEG:

polyethylene glycol

RES:

reticuloendothelial system

RIA:

radioimmunoassay

RPM:

revolutions per minute

SD:

standard deviation

SSM:

sterically stabilized phospholipid simple micelles

TNF-α:

tumor necrosis factor-α

VIP:

vasoactive intestinal peptide

REFERENCES

  1. Angus DC, Clermont G, Linde-Zwirble WT, Musthafa AA, Dremsizov TT, Lidicker J, et al. Healthcare costs and long-term outcomes after acute respiratory distress syndrome: A phase III trial of inhaled nitric oxide. Crit Care Med. 2006;34(12):2883–90.

    PubMed  Google Scholar 

  2. Rubenfeld GD, Herridge MS. Epidemiology and outcomes of acute lung injury. Chest. 2007;131(2):554–62.

    PubMed  Google Scholar 

  3. Bosma KJ, Lewis JF. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. Expert Opin Emerg Drugs. 2007;12(3):461–77.

    CAS  PubMed  Google Scholar 

  4. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    CAS  PubMed  Google Scholar 

  5. Blandino-Rosano M, Perez-Arana G, Mellado-Gil JM, Segundo C, Aguilar-Diosdado M. Anti-proliferative effect of pro-inflammatory cytokines in cultured beta cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide -1. J Mol Endocrinol. 2008;41(1):35–44.

    CAS  PubMed  Google Scholar 

  6. Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res. 2006;55(4):352–60.

    CAS  PubMed  Google Scholar 

  7. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    CAS  PubMed  Google Scholar 

  8. Lee KC, Chae SY, Kim TH, Lee S, Lee ES, Youn YS. Intrapulmonary potential of polyethylene glycol-modified glucagon-like peptide-1s as a type 2 anti-diabetic agent. Regul Pept. 2009;152(1–3):101–7.

    CAS  PubMed  Google Scholar 

  9. Yin D, Lu Y, Zhang H, Zhang G, Zou H, Sun D, et al. Preparation of glucagon-like peptide-1 loaded PLGA microspheres: characterizations, release studies and bioactivities in vitro/in vivo. Chem Pharm Bull. 2008;56(2):156–61.

    CAS  PubMed  Google Scholar 

  10. Weise WJ, Sivanandy MS, Block CA, Comi RJ. Exenatide-associated ischemic renal failure. Diab Care. 2009;32(2):e22–3.

    Google Scholar 

  11. Philippe J, Raccah D. Treating type 2 diabetes: how safe are current therapeutic agents? Int J Clin Pract. 2009;63(2):321–32.

    CAS  PubMed  Google Scholar 

  12. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.

    CAS  PubMed  Google Scholar 

  13. Lim SB, Rubinstein I, Onyuksel H. Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm. 2008;356(1–2):345–50.

    CAS  PubMed  Google Scholar 

  14. Sethi V, Onyuksel H, Rubinstein I. Enhanced circulation half-life and reduced clearance of vasoactive intestinal peptide (VIP) loaded in sterically stabilized phospholipid micelles (SSM) in mice with collagen-induced arthritis (CIA). AAPS PharmSci. 2003;5 Suppl 1:M1045.

    Google Scholar 

  15. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1(3):193–212.

    CAS  PubMed  Google Scholar 

  16. Sadikot RT, Rubinstein I. Long-acting, multi-targeted nanomedicine: addressing unmet medical need in acute lung injury. J Biomed Nanotechnol. 2009;5(6):614–9.

    CAS  PubMed  Google Scholar 

  17. Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP. Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir. 2005;21(8):3279–90.

    CAS  PubMed  Google Scholar 

  18. Stark A, Mentlein R. Somatostatin inhibits glucagon-like peptide-1-induced insulin secretion and proliferation of RINm5F insulinoma cells. Regul Pept. 2002;108(2–3):97–102.

    CAS  PubMed  Google Scholar 

  19. John H, Maronde E, Forssmann WG, Meyer M, Adermann K. N-terminal acetylation protects glucagon-like peptide GLP-1-(7–34)-amide from DPP-IV-mediated degradation retaining cAMP- and insulin-releasing capacity. Eur J Med Res. 2008;13(2):73–8.

    CAS  PubMed  Google Scholar 

  20. Ingenito EP, Mora R, Cullivan M, Marzan Y, Haley K, Mark L, et al. Decreased surfactant protein-B expression and surfactant dysfunction in a murine model of acute lung injury. Am J Respir Cell Mol Biol. 2001;25(1):35–44.

    CAS  PubMed  Google Scholar 

  21. Baron RM, Carvajal IM, Fredenburgh LE, Liu X, Porrata Y, Cullivan ML, et al. Nitric oxide synthase-2 down-regulates surfactant protein-B expression and enhances endotoxin-induced lung injury in mice. FASEB J. 2004;18(11):1276–8.

    CAS  PubMed  Google Scholar 

  22. Yull FE, Han W, Jansen ED, Everhart MB, Sadikot RT, Christman JW, et al. Bioluminescent detection of endotoxin effects on HIV-1 LTR-driven transcription in vivo. J Histochem Cytochem. 2003;51(6):741–9.

    CAS  PubMed  Google Scholar 

  23. Jeyaseelan S, Chu HW, Young SK, Worthen GS. Transcriptional profiling of lipopolysaccharide-induced acute lung injury. Infect Immun. 2004;72(12):7247–56.

    CAS  PubMed  Google Scholar 

  24. Krishnadas A, Onyuksel H, Rubinstein I. Interactions of VIP, secretin and PACAP(1–38) with phospholipids: a biological paradox revisited. Curr Pharm Des. 2003;9(12):1005–12.

    CAS  PubMed  Google Scholar 

  25. Bourbigot S, Dodd E, Horwood C, Cumby N, Fardy L, Welch WH, et al. Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles. Biopolymers. 2009;91(1):1–13.

    CAS  PubMed  Google Scholar 

  26. Tinoco LW, Gomes-Neto F, Valente AP, Almeida FC. Effect of micelle interface on the binding of anticoccidial PW2 peptide. J Biomol NMR. 2007;39(4):315–22.

    CAS  PubMed  Google Scholar 

  27. Sadikot RT, Jansen ED, Blackwell TR, Zoia O, Yull F, Christman JW, et al. High-dose dexamethasone accentuates nuclear factor-kappa b activation in endotoxin-treated mice. Am J Respir Crit Care Med. 2001;164(5):873–8.

    CAS  PubMed  Google Scholar 

  28. Bream-Rouwenhorst HR, Beltz EA, Ross MB, Moores KG. Recent developments in the management of acute respiratory distress syndrome in adults. Am J Health Syst Pharm. 2008;65(1):29–36.

    CAS  PubMed  Google Scholar 

  29. Sato Y. Modulation of PMN-endothelial cells interactions by cyclic nucleotides. Curr Pharm Des. 2004;10(2):163–70.

    CAS  PubMed  Google Scholar 

  30. Stephens CG, Snyderman R. Cyclic nucleotides regulate the morphologic alterations required for chemotaxis in monocytes. J Immunol. 1982;128(3):1192–7.

    CAS  PubMed  Google Scholar 

  31. Harvath L, Robbins JD, Russell AA, Seamon KB. cAMP and human neutrophil chemotaxis. Elevation of cAMP differentially affects chemotactic responsiveness. J Immunol. 1991;146(1):224–32.

    CAS  PubMed  Google Scholar 

  32. Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Intern Med. 2009;48(9):621–30.

    PubMed  Google Scholar 

  33. Koo OM. A novel nanomedicine against arthritis: targeted camptothecin phospholipid micelles. PhD Thesis, University of Illinois at Chicago; 2006.

  34. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.

    CAS  PubMed  Google Scholar 

  35. Larsen J, Hylleberg B, Ng K, Damsbo P. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diab Care. 2001;24(8):1416–21.

    CAS  Google Scholar 

  36. Chen HI, Yeh DY, Liou HL, Kao SJ. Insulin attenuates endotoxin-induced acute lung injury in conscious rats. Crit Care Med. 2006;34(3):758–64.

    CAS  PubMed  Google Scholar 

  37. Hagiwara S, Iwasaka H, Hasegawa A, Koga H, Noguchi T. Effects of hyperglycemia and insulin therapy on high mobility group box 1 in endotoxin-induced acute lung injury in a rat model. Crit Care Med. 2008;36(8):2407–13.

    CAS  PubMed  Google Scholar 

  38. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported, in part, by Parenteral Drug Association Pre-Doctoral Fellowship, NIH grants AG024026, CA121797 and by VA Merit Review grant. This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06RR15482 from the National Center for Research Resources, NIH. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Önyüksel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S.B., Rubinstein, I., Sadikot, R.T. et al. A Novel Peptide Nanomedicine Against Acute Lung Injury: GLP-1 in Phospholipid Micelles. Pharm Res 28, 662–672 (2011). https://doi.org/10.1007/s11095-010-0322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0322-4

KEY WORDS

Navigation