Skip to main content

Advertisement

Log in

Accelerated Stability Studies for Moisture-Induced Aggregation of Tetanus Toxoid

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The study was carried out to evaluate the effect of exposing solid tetanus toxoid to moisture in two different ways on the structure and function of the toxoid.

Methods

Tetanus toxoid was exposed to moisture by (i) the addition of an optimized amount of buffer and (ii) incubation under an environment provided by a saturated solution of K2CrO4. The changes in the conformational, structural and antigenic properties of tetanus toxoid were measured and compared.

Results

Results show that even at a similar level of moisture-induced aggregation, the amounts of water absorbed by the two preparations of tetanus toxoid are different. Differences in antigenicity and changes in structure of the toxoid at primary, secondary and tertiary structure levels were seen.

Conclusion

Although both conditions are used to mimic accelerated stability conditions in the laboratory, the final products are different in the two cases. Thus, conditions for ‘accelerated stability studies’ for therapeutic proteins need to be selected with care so that they resemble the fate of the actual product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Quaak SG, Haanen JB, Beijnen JH, Nuijen B. Naked plasmid DNA formulation: effect of different disaccharides on stability after lyophilisation. AAPS PharmSciTech. 2010;11:344–50.

    CAS  PubMed  Google Scholar 

  2. Costantino HR, Langer R, Klibanov AM. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J Pharm Sci. 1994;83:1662–9.

    CAS  PubMed  Google Scholar 

  3. Chang LL, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009;98:2886–908.

    CAS  PubMed  Google Scholar 

  4. Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharm Sci. 1999;88:489–500.

    CAS  PubMed  Google Scholar 

  5. Jain NK, Roy I. Trehalose and protein stability. Curr Protoc Protein Sci. Chapter 4:Unit 4.9; 2010.

  6. Jain NK, Roy I. Role of trehalose in moisture-induced aggregation of bovine serum albumin. Eur J Pharm Biopharm. 2008;69:824–34.

    CAS  PubMed  Google Scholar 

  7. Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci. 2009;18:24–36.

    CAS  PubMed  Google Scholar 

  8. Wang W, Nema S, Teagarden D. Protein aggregation-pathways and influencing factors. Int J Pharm. 2010;390:89–99.

    CAS  PubMed  Google Scholar 

  9. Chang AC, Gupta RK. Stabilization of tetanus toxoid in poly(DL-lactic-co-glycolic acid) microspheres for the controlled release of antigen. J Pharm Sci. 1996;85:129–32.

    CAS  PubMed  Google Scholar 

  10. Costantino HR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized insulin. Pharm Res. 1994;11:21–9.

    CAS  PubMed  Google Scholar 

  11. Costantino HR, Langer R, Klibanov AM. Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin: effect of moisture and stabilization by excipients. Biotechnology (NY). 1995;13:493–6.

    CAS  Google Scholar 

  12. Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng. 1991;37:177–84.

    CAS  PubMed  Google Scholar 

  13. Zhou P, Liu X, Labuza TP. Effects of moisture-induced whey protein aggregation on protein conformation, the state of water molecules, and the microstructure and texture of high-protein-containing matrix. J Agric Food Chem. 2008;56:4534–40.

    CAS  PubMed  Google Scholar 

  14. Jiang W, Schwendeman SP. Formaldehyde-mediated aggregation of protein antigens: comparison of untreated and formalinized model antigens. Biotechnol Bioeng. 2000;70:507–17.

    CAS  PubMed  Google Scholar 

  15. Zhou P, Liu X, Labuza TP. Moisture-induced aggregation of whey proteins in a protein/buffer model system. J Agric Food Chem. 2008;56:2048–54.

    CAS  PubMed  Google Scholar 

  16. Schwendeman SP, Costantino HR, Gupta RK, Siber GR, Klibanov AM, Langer R. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc Natl Acad Sci USA. 1995;92:11234–8.

    CAS  PubMed  Google Scholar 

  17. Flores-Fernandez GM, Sola RJ, Griebenow K. The relation between moisture-induced aggregation and structural changes in lyophilized insulin. J Pharm Pharmacol. 2009;61:1555–61.

    CAS  PubMed  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    CAS  PubMed  Google Scholar 

  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    CAS  PubMed  Google Scholar 

  20. Determan AS, Wilson JH, Kipper MJ, Wannemuehler MJ, Narasimhan B. Protein stability in the presence of polymer degradation products: consequences for controlled release formulations. Biomaterials. 2006;27:3312–20.

    CAS  PubMed  Google Scholar 

  21. Habeeb AF. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14:328–36.

    CAS  PubMed  Google Scholar 

  22. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    CAS  PubMed  Google Scholar 

  23. Riddles PW, Blakeley RL, Zerner B. Reassessment of Ellman’s reagent. Methods Enzymol. 1983;91:49–60.

    CAS  PubMed  Google Scholar 

  24. Perez-Iratxeta C, Andrade-Navarro MA. K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol. 2008;8:25.

    PubMed  Google Scholar 

  25. Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods (San Diego, Calif). 2004;34:151–60.

    CAS  Google Scholar 

  26. Sanchez A, Villamayor B, Guo Y, McIver J, Alonso MJ. Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int J Pharm. 1999;185:255–66.

    CAS  PubMed  Google Scholar 

  27. Jiang W, Schwendeman SP. Stabilization of tetanus toxoid encapsulated in PLGA microspheres. Mol Pharmaceutics. 2008;5:808–17.

    CAS  Google Scholar 

  28. Hageman MJ. The role of moisture in protein stability. Drug Dev Indus Pharm. 1988;14:2047–70.

    CAS  Google Scholar 

  29. Separovic F, Lam YH, Ke X, Chan H-K. A solid-state NMR study of protein hydration and stability. Pharm Res. 1998;15:1816–21.

    CAS  PubMed  Google Scholar 

  30. Smith AL, Shirazi HM, Mulligan SR. Water sorption isotherms and enthalpies of water sorption by lysozyme using the quartz crystal microbalance/heat conduction calorimeter. Biochim Biophys Acta. 2002;1594:150–9.

    CAS  PubMed  Google Scholar 

  31. Bone S. Dielectric and gravimetric studies of water binding to lysozyme. Phys Med Biol. 1996;41:1265–75.

    CAS  PubMed  Google Scholar 

  32. D’Arcy RL, Watt IC. Analysis of sorption isotherms of nonhomogeneous sorbents. Trans Faraday Soc. 1970;66:1236–45.

    Google Scholar 

  33. Luscher-Mattli M. Thermodynamic parameters of biopolymer-water systems. In: Hinz H-J, editor. Thermodynamic data for biochemistry and biotechnology. Berlin: Springer-Verlag; 1986. p. 276–94.

    Google Scholar 

  34. Aggerbeck H, Heron I. Detoxification of diphtheria and tetanus toxin with formaldehyde. Detection of protein conjugates. Biologicals. 1992;20:109–15.

    CAS  PubMed  Google Scholar 

  35. Robinson JP, Picklesimer JB, Puett D. Tetanus toxin. The effect of chemical modifications on toxicity, immunogenicity, and conformation. J Biol Chem. 1975;250:7435–42.

    CAS  PubMed  Google Scholar 

  36. Pedersen JS, Otzen DE. Amyloid-a state in many guises: survival of the fittest fibril fold. Protein Sci. 2008;17:2–10.

    CAS  PubMed  Google Scholar 

  37. Kumar S, Udgaonkar JB. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Biochemistry. 2009;48:6441–9.

    CAS  PubMed  Google Scholar 

  38. Kumar S, Udgaonkar JB. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation. J Mol Biol. 2009;385:1266–76.

    CAS  PubMed  Google Scholar 

  39. Johansen P, Merkle HP, Gander B. Physico-chemical and antigenic properties of tetanus and diphtheria toxoids and steps towards improved stability. Biochim Biophys Acta. 1998;1425:425–36.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Partial financial support received from Department of Biotechnology (Gov’t of India) is gratefully acknowledged. NKJ acknowledges the grant of senior research fellowship from Council for Scientific and Industrial Research (Gov’t of India). The authors thank Mr. Dinesh Kumar for recording the scanning electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, N.K., Roy, I. Accelerated Stability Studies for Moisture-Induced Aggregation of Tetanus Toxoid. Pharm Res 28, 626–639 (2011). https://doi.org/10.1007/s11095-010-0316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0316-2

KEY WORDS

Navigation