Skip to main content

Advertisement

Log in

Galbanic Acid Isolated from Ferula assafoetida Exerts In Vivo Anti-tumor Activity in Association with Anti-angiogenesis and Anti-proliferation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate whether galbanic acid (GBA) exerts anti-angiogenic and anti-cancer activities.

Methods

Using human umbilical vein endothelial cell (HUVEC) model, we analyzed effects of GBA on cellular and molecular events related to angiogenesis. We tested its direct anti-proliferative action on mouse Lewis lung cancer (LLC) cells and established its in vivo anti-angiogenic and anti-tumor efficacy using LLC model.

Results

GBA significantly decreased vascular endothelial growth factor (VEGF)-induced proliferation and inhibited VEGF-induced migration and tube formation of HUVECs. These effects were accompanied by decreased phosphorylation of p38-mitogen-activated protein kinase (MAPK), c-jun N-terminal kinase (JNK), and AKT, and decreased expression of VEGFR targets endothelial nitric oxide synthase (eNOS) and cyclin D1 in VEGF-treated HUVECs. GBA also decreased LLC proliferation with an apparent G2/M arrest, but did not induce apoptosis. In vivo, inclusion of GBA in Matrigel plugs reduced VEGF-induced angiogenesis in mice. Galbanic acid given by daily i.p. injection (1 mg/kg) inhibited LLC-induced angiogenesis in an intradermal inoculation model and inhibited the growth of s.c. inoculated LLC allograft in syngenic mice. Immunohistochemistry revealed decreased CD34 microvessel density index and Ki-67 proliferative index in GBA-treated tumors.

Conclusions

GBA exerts anti-cancer activity in association with anti-angiogenic and anti-proliferative actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    CAS  PubMed  Google Scholar 

  4. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643–51.

    CAS  PubMed  Google Scholar 

  5. Krupinski J, Stroemer P, Slevin M, Marti E, Kumar P, Rubio F. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. NeuroReport. 2003;14(8):1171–6.

    PubMed  Google Scholar 

  6. Slevin M, Krupinski J, Kumar P, Gaffney J, Kumar S. Gene activation and protein expression following ischaemic stroke: strategies towards neuroprotection. J Cell Mol Med. 2005;9(1):85–102.

    CAS  PubMed  Google Scholar 

  7. Slevin M, Kumar P, Gaffney J, Kumar S, Krupinski J. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci (Lond). 2006;111(3):171–83.

    CAS  Google Scholar 

  8. Tosetti F, Ferrari N, De Flora S, Albini A. Angioprevention’: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16(1):2–14.

    CAS  PubMed  Google Scholar 

  9. El Sayed KA. Natural products as angiogenesis modulators. Mini Rev Med Chem. 2005;5(11):971–93.

    PubMed  Google Scholar 

  10. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91.

    CAS  PubMed  Google Scholar 

  11. Abd El-Razek MH, Ohta S, Ahmed AA, Hirata T. Sesquiterpene coumarins from the roots of Ferula assa-foetida. Phytochemistry. 2001;58(8):1289–95.

    CAS  PubMed  Google Scholar 

  12. Lee JH, Choi S, Lee Y, et al. Herbal compound farnesiferol C exerts antiangiogenic and antitumor activity and targets multiple aspects of VEGFR1 (Flt1) or VEGFR2 (Flk1) signaling cascades. Mol Cancer Ther. 2010;9(2):389–99.

    CAS  PubMed  Google Scholar 

  13. Lee SG, Ryu SY, Ahn JW. Reinvestigation of the structure of galbanic acid by 2D NMR techniques including 2D inadequate. Bull Korean Chem Soc. 1998;19(3):384–6.

    CAS  Google Scholar 

  14. Mansurov MM, Martirosov MS. Effect of the sodium salt of galbanic acid on thrombocyte aggregation. Farmakol Toksikol. 1988;51(1):47–8.

    CAS  PubMed  Google Scholar 

  15. Bobek V, Kovarik J. Antitumor and antimetastatic effect of warfarin and heparins. Biomed Pharmacother. 2004;58(4):213–9.

    CAS  PubMed  Google Scholar 

  16. Nakashima T, Hirano S, Agata N, et al. Inhibition of angiogenesis by a new isocoumarin, NM-3. J Antibiot (Tokyo). 1999;52(4):426–8.

    CAS  Google Scholar 

  17. Nam NH, Kim Y, You YJ, Hong DH, Kim HM, Ahn BZ. New constituents from Crinum latifolium with inhibitory effects against tube-like formation of human umbilical venous endothelial cells. Nat Prod Res. 2004;18(6):485–91.

    CAS  PubMed  Google Scholar 

  18. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10.

    CAS  PubMed  Google Scholar 

  19. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12(17):5018–22.

    CAS  PubMed  Google Scholar 

  20. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745–56.

    CAS  PubMed  Google Scholar 

  21. Huh JE, Lee EO, Kim MS, et al. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis. 2005;26(8):1436–45.

    CAS  PubMed  Google Scholar 

  22. Jost LM, Kirkwood JM, Whiteside TL. Improved short- and long-term XTT-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells. J Immunol Methods. 1992;147(2):153–65.

    CAS  PubMed  Google Scholar 

  23. Grant DS, Kinsella JL, Fridman R, et al. Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol. 1992;153(3):614–25.

    CAS  PubMed  Google Scholar 

  24. Lee HJ, Lee EO, Rhee YH, et al. An oriental herbal cocktail, ka-mi-kae-kyuk-tang, exerts anti-cancer activities by targeting angiogenesis, apoptosis and metastasis. Carcinogenesis. 2006;27(12):2455–63.

    CAS  PubMed  Google Scholar 

  25. Passaniti A, Taylor RM, Pili R, et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Laboratory investigation; a journal of technical methods and pathology. 1992;67(4):519–28.

    Google Scholar 

  26. Alessandri G, Filippeschi S, Sinibaldi P, et al. Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res. 1987;47(16):4243–7.

    CAS  PubMed  Google Scholar 

  27. Giavazzi R, Campbell DE, Jessup JM, Cleary K, Fidler IJ. Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice. Cancer Res. 1986;46(4 Pt 2):1928–33.

    CAS  PubMed  Google Scholar 

  28. Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol. 1999;67(1):1–6.

    CAS  PubMed  Google Scholar 

  29. Garg DK, Banerjea AC, Verna J. The role of intestinal Clostidia and the effect of asafetida (Hing) and alcohol in flatulence. Indian J Microbiol. 1980;20(3):194–7.

    Google Scholar 

  30. Mallikarjuna GU, Dhanalakshmi S, Raisuddin S, Rao AR. Chemomodulatory influence of Ferula asafoetida on mammary epithelial differentiation, hepatic drug metabolizing enzymes, antioxidant profiles and N-methyl-N-nitrosourea-induced mammary carcinogenesis in rats. Breast Cancer Res Treat. 2003;81(1):1–10.

    CAS  PubMed  Google Scholar 

  31. Unnikrishnan MC, Kuttan R. Tumour reducing and anticarcinogenic activity of selected spices. Cancer Lett. 1990;51(1):85–9.

    CAS  PubMed  Google Scholar 

  32. Mansurov MM. Effect of Ferula asafetida on the blood coagulability. Med Zh Uzb. 1967;1967(6):46–9.

    Google Scholar 

  33. Rahlfs VW, Mossinger P. Asa foetida in the treatment of the irritable colon: a double-blind trial (author’s transl). Dtsch Med Wochenschr. 1979;104(4):140–3.

    CAS  PubMed  Google Scholar 

  34. Soni KB, Rajan A, Kuttan R. Inhibition of aflatoxin-induced liver damage in ducklings by food additives. Mycotoxin Res. 1993;9(1):22–7.

    CAS  Google Scholar 

  35. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.

    CAS  PubMed  Google Scholar 

  36. Depeille PE, Ding Y, Bromberg-White JL, Duesbery NS. MKK signaling and vascularization. Oncogene. 2007;26(9):1290–6.

    CAS  PubMed  Google Scholar 

  37. Murphy DA, Makonnen S, Lassoued W, Feldman MD, Carter C, Lee WM. Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am J Pathol. 2006;169(5):1875–85.

    CAS  PubMed  Google Scholar 

  38. Bissery MC, Guenard D, Gueritte-Voegelein F, Lavelle F. Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res. 1991;51(18):4845–52.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Medical Research Center (MRC) grant (No. 2009-0063466) (S.H. Kim) and Hormel Foundation and NIH grant CA136953 (J. Lu). All authors declare no personal or financial conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxuan Lü or Sung-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Lee, HJ., Jeong, SJ. et al. Galbanic Acid Isolated from Ferula assafoetida Exerts In Vivo Anti-tumor Activity in Association with Anti-angiogenesis and Anti-proliferation. Pharm Res 28, 597–609 (2011). https://doi.org/10.1007/s11095-010-0311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0311-7

KEY WORDS

Navigation