Skip to main content

Advertisement

Log in

Incorporation of the TLR4 Agonist Monophosphoryl Lipid A Into the Bilayer of DDA/TDB Liposomes: Physico-Chemical Characterization and Induction of CD8+ T-Cell Responses In Vivo

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The combination of delivery systems like cationic liposomes and immunopotentiators such as Toll-like receptor (TLR) ligands is a promising approach for rational vaccine adjuvant design. The purpose of this study was to investigate how the incorporation of the poorly soluble TLR4 agonist monophosphoryl lipid A (MPL) into cationic liposomes based on dimethyldioctadecylammonium (DDA) and trehalose 6,6′-dibehenate (TDB) influenced the physicochemical and immunological properties of the liposomes.

Methods

The DDA/TDB/MPL liposomes were characterized with regard to particle size, poly dispersity, surface charge, stability and thermodynamic properties. The adjuvant formulations were tested in vivo in mice using ovalbumin (OVA) as model antigen.

Results

Integration of MPL into the bilayer structure of DDA/TDB liposomes was evident from a decreased phase transition temperature, an improved membrane packing, and a reduction in surface charge. The particle size and favorable liposome storage stability were not affected by MPL. In mice, DDA/TDB/MPL liposomes induced an antigen-specific CD8+ T-cell response and a humoral response.

Conclusions

Enhancing the solubility of MPL by inclusion into the bilayer of DDA/TDB liposomes changes the membrane characteristics of the adjuvant system and provides the liposomes with CD8+ T-cell inducing properties without compromising humoral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol. 2007;5:505–17.

    CAS  PubMed  Google Scholar 

  2. O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant - ‘the long and winding road’. Drug Discov Today. 2009;14:541–51.

    PubMed  Google Scholar 

  3. Nordly P, Madsen HB, Nielsen HM, Foged C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin Drug Deliv. 2009;6:657–72.

    CAS  PubMed  Google Scholar 

  4. Rappuoli R. Bridging the knowledge gaps in vaccine design. Nat Biotechnol. 2007;25:1361–6.

    CAS  PubMed  Google Scholar 

  5. Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med. 2005;11:S63–8.

    CAS  PubMed  Google Scholar 

  6. O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov. 2003;2:727–35.

    PubMed  Google Scholar 

  7. Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine. 2004;22:1903–13.

    CAS  PubMed  Google Scholar 

  8. Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, et al. Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins. Biochem Biophys Res Commun. 1997;240:793–7.

    CAS  PubMed  Google Scholar 

  9. Henriksen-Lacey M, Bramwell VW, Christensen D, Agger EM, Andersen P, Perrie Y. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J Control Release. 2010;142:180–6.

    CAS  PubMed  Google Scholar 

  10. Okemoto K, Kawasaki K, Hanada K, Miura M, Nishijima M. A potent adjuvant monophosphoryl lipid A triggers various immune responses, but not secretion of IL-1beta or activation of caspase-1. J Immunol. 2006;176:1203–8.

    CAS  PubMed  Google Scholar 

  11. Tiberio L, Fletcher L, Eldridge JH, Duncan DD. Host factors impacting the innate response in humans to the candidate adjuvants RC529 and monophosphoryl lipid A. Vaccine. 2004;22:1515–23.

    CAS  PubMed  Google Scholar 

  12. Evans JT, Cluff CW, Johnson DA, Lacy MJ, Persing DH, Baldridge JR. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi. 529. Expert Rev Vaccines. 2003;2:219–29.

    CAS  PubMed  Google Scholar 

  13. Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol. 2006;176:7335–45.

    CAS  PubMed  Google Scholar 

  14. Durand V, Wong SY, Tough DF, Le Bon A. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-alpha/beta. Immunol Cell Biol. 2004;82:596–602.

    CAS  PubMed  Google Scholar 

  15. Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C, et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS ONE. 2008;3:e3116.

    PubMed  Google Scholar 

  16. Richards RL, Rao M, Wassef NM, Glenn GM, Rothwell SW, Alving CR. Liposomes containing lipid A serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect Immun. 1998;66:2859–65.

    CAS  PubMed  Google Scholar 

  17. Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65:3231–40.

    CAS  PubMed  Google Scholar 

  18. Johnson AG, Tomai M, Solem L, Beck L, Ribi E. Characterization of a nontoxic monophosphoryl lipid A. Rev Infect Dis. 1987;9 Suppl 5:S512–6.

    CAS  PubMed  Google Scholar 

  19. Takayama K, Qureshi N, Raetz CR, Ribi E, Peterson J, Cantrell JL, et al. Influence of fine structure of lipid A on Limulus amebocyte lysate clotting and toxic activities. Infect Immun. 1984;45:350–5.

    CAS  PubMed  Google Scholar 

  20. Baldridge JR, Crane RT. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods. 1999;19:103–7.

    CAS  PubMed  Google Scholar 

  21. Hui GS, Hashimoto CN. Adjuvant formulations possess differing efficacy in the potentiation of antibody and cell mediated responses to a human malaria vaccine under selective immune genes knockout environment. Int Immunopharmacol. 2008;8:1012–22.

    CAS  PubMed  Google Scholar 

  22. Anderson RC, Fox CB, Dutill TS, Shaverdian N, Evers TL, Poshusta GR, et al. Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf, B Biointerfaces. 2010;75:123–32.

    CAS  Google Scholar 

  23. Vandepapeliere P, Horsmans Y, Moris P, Van Mechelen M, Janssens M, Koutsoukos M, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine. 2008;26:1375–86.

    CAS  PubMed  Google Scholar 

  24. Childers NK, Miller KL, Tong G, Llarena JC, Greenway T, Ulrich JT, et al. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun. 2000;68:5509–16.

    CAS  PubMed  Google Scholar 

  25. Quintilio W, Kubrusly FS, Iourtov D, Miyaki C, Sakauchi MA, Lucio F, et al. Bordetella pertussis monophosphoryl lipid A as adjuvant for inactivated split virion influenza vaccine in mice. Vaccine. 2009;27:4219–24.

    CAS  PubMed  Google Scholar 

  26. Arigita C, Luijkx T, Jiskoot W, Poelen M, Hennink WE, Crommelin DJ, et al. Well-defined and potent liposomal meningococcal B vaccines adjuvated with LPS derivatives. Vaccine. 2005;23:5091–8.

    CAS  PubMed  Google Scholar 

  27. Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, et al. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6, 6′-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta. 2005;1718:22–31.

    CAS  PubMed  Google Scholar 

  28. Lindenstrom T, Andersen P, Agger EM. Determining adjuvant activity on T-cell function in vivo: Th cells. Methods Mol Biol. 2010;626:213–29.

    CAS  PubMed  Google Scholar 

  29. Christensen D, Foged C, Rosenkrands I, Nielsen HM, Andersen P, Agger EM. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochim Biophys Acta. 2007;1768:2120–9.

    CAS  PubMed  Google Scholar 

  30. Christensen D, Kirby D, Foged C, Agger EM, Andersen P, Perrie Y, et al. alpha, alpha′-trehalose 6, 6′-dibehenate in non-phospholipid-based liposomes enables direct interaction with trehalose, offering stability during freeze-drying. Biochim Biophys Acta. 2008;1778:1365–73.

    CAS  PubMed  Google Scholar 

  31. Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, et al. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology. 2007;121:216–26.

    CAS  PubMed  Google Scholar 

  32. Garcon N, Chomez P, Van MM. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines. 2007;6:723–39.

    CAS  PubMed  Google Scholar 

  33. Vangala A, Kirby D, Rosenkrands I, Agger EM, Andersen P, Perrie Y. A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: characterisation, environmental scanning electron microscopy and immunisation studies in mice. J Pharm Pharmacol. 2006;58:787–99.

    CAS  PubMed  Google Scholar 

  34. Zwiorek K, Bourquin C, Battiany J, Winter G, Endres S, Hartmann G, et al. Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. Pharm Res. 2008;25:551–62.

    CAS  PubMed  Google Scholar 

  35. Kovacs-Nolan J, Latimer L, Landi A, Jenssen H, Hancock RE, Babiuk LA, et al. The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. Vaccine. 2009;27:2055–64.

    CAS  PubMed  Google Scholar 

  36. Gonçalves da Silva AM, Viseu MI. Synergism in mixed monolayers of cationic and anionic surfactants: A thermodynamic analysis of miscibility at the air-water interface. Colloids Surf, A Physicochem Eng Asp. 1998;144:191–200.

    Google Scholar 

  37. Gonçalves da Silva AM, Viseu MI, Campos CS, Rechena T. Effect of the spreading procedure on the formation of cationic-anionic mixed monolayers. Thin Solid Films. 1998;320:236–40.

    Google Scholar 

  38. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.

    CAS  PubMed  Google Scholar 

  39. Werninghaus K, Babiak A, Gross O, Holscher C, Dietrich H, Agger EM, et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med. 2009;206:89–97.

    CAS  PubMed  Google Scholar 

  40. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007;316:1628–32.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by the Danish National Advanced Technology Foundation and the Drug Research Academy. We acknowledge Novo Nordisk A/S for co-funding the VP-DSC MicroCalorimeter, the Danish Agency for Science, Technology and Innovation for the Zetasizer Nano ZS, and the Drug Research Academy for co-funding the KSV Minitrough 1. Thanks to Gunnel Karlsson (Lund University) for performing the cryo-TEM analysis and Fabrice Rose (University of Copenhagen) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pernille Nordly or Camilla Foged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordly, P., Agger, E.M., Andersen, P. et al. Incorporation of the TLR4 Agonist Monophosphoryl Lipid A Into the Bilayer of DDA/TDB Liposomes: Physico-Chemical Characterization and Induction of CD8+ T-Cell Responses In Vivo . Pharm Res 28, 553–562 (2011). https://doi.org/10.1007/s11095-010-0301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0301-9

KEY WORDS

Navigation