Skip to main content
Log in

Human NPC1L1 Expression is Positively Regulated by PPARα

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Niemann-Pick C1-like 1 (NPC1L1), a pharmacological target of ezetimibe, is responsible for cholesterol absorption in enterocytes and hepatocytes. In the present study, the involvement of peroxisome proliferator-activated receptor α (PPARα) and its cofactor, PPARγ coactivator 1α (PGC1α) in the transcriptional regulation of human NPC1L1 was analyzed.

Methods

Reporter gene assays and electrophoretic mobility shift assays (EMSAs) were performed with the 5′-flanking region of the human NPC1L1 gene and the effect of siPPARα was examined.

Results

PPARα-mediated transactivation was observed with human NPC1L1 promoter constructs. Detailed analyses using deletion- and mutated-promoter constructs revealed the presence of a functional PPARα-response element (PPRE) upstream of the human NPC1L1 gene (−846/−834), a direct binding of PPARα and RXRα to which was confirmed by EMSAs. Moreover, PPARα-specific knockdown resulted in a significant decrease in the endogenous expression of NPC1L1 mRNA and protein in human-derived HepG2 cells. Furthermore, cotransfection of PGC1α stimulated the SREBP2/HNF4α- and PPARα/RXRα-mediated activation of the human NPC1L1 promoter.

Conclusions

We found that PPARα positively regulates human NPC1L1 transcription via direct binding to a PPRE. Additionally, PGC1α stimulates the SREBP2/HNF4α- and PPARα/RXRα-mediated transactivation of human NPC1L1. These findings may provide new insights into the close relationship of glucose, fatty acids and cholesterol homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DMEM:

Dulbecco’s Modified Eagle Medium

DR-1:

direct repeat-1

EMSA:

electrophoretic mobility shift assay

HNF4α:

hepatocyte nuclear factor 4α

I-FABP:

intestinal-fatty acid binding protein

NPC1L1:

Niemann-Pick C1-like 1

PGC1α:

PPARγ coactivator 1α

PPAR:

peroxisome proliferator-activated receptor

PPRE:

PPARα-response element

RXR:

retinoid X receptor

SDS:

sodium dodecyl sulfate

SREBP2:

sterol responsive element binding protein 2

TBS-T:

Tris-buffered saline containing 0.05% Tween 20

REFERENCES

  1. Altmann SW, Davis Jr HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.

    Article  CAS  PubMed  Google Scholar 

  2. Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem. 2005;280(13):12710–20.

    Article  CAS  PubMed  Google Scholar 

  3. Davis Jr HR, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279(32):33586–92.

    Article  CAS  PubMed  Google Scholar 

  4. Yamanashi Y, Takada T, Suzuki H. Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. J Pharmacol Exp Ther. 2007;320(2):559–64.

    Article  CAS  PubMed  Google Scholar 

  5. Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol. 2008;74(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  6. Yamanashi Y, Takada T, Suzuki H. In-vitro characterization of the six clustered variants of NPC1L1 observed in cholesterol low absorbers. Pharmacogenet Genomics. 2009;19(11):884–92.

    Article  CAS  PubMed  Google Scholar 

  7. Takada T, Suzuki H. Molecular mechanisms of membrane transport of vitamin E. Mol Nutr Food Res. 2010;54(5):616–22.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA. 2005;102(23):8132–7.

    Article  CAS  PubMed  Google Scholar 

  9. Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest. 2007;117(7):1968–78.

    Article  CAS  PubMed  Google Scholar 

  10. Alrefai WA, Annaba F, Sarwar Z, Dwivedi A, Saksena S, Singla A, et al. Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: role of sterol regulatory element binding protein 2. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G369–76.

    Article  CAS  PubMed  Google Scholar 

  11. Iwayanagi Y, Takada T, Suzuki H. HNF4alpha is a crucial modulator of the cholesterol-dependent regulation of NPC1L1. Pharm Res. 2008;25(5):1134–41.

    Article  CAS  PubMed  Google Scholar 

  12. van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005;46(3):526–34.

    Article  PubMed  Google Scholar 

  13. Vrins CL, van der Velde AE, van den Oever K, Levels JH, Huet S, Oude Elferink RP, et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res. 2009;50(10):2046–54.

    Article  CAS  PubMed  Google Scholar 

  14. Duval C, Touche V, Tailleux A, Fruchart JC, Fievet C, Clavey V, et al. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun. 2006;340(4):1259–63.

    Article  CAS  PubMed  Google Scholar 

  15. Lalloyer F, Fievet C, Lestavel S, Torpier G, van der Veen J, Touche V, et al. The RXR agonist bexarotene improves cholesterol homeostasis and inhibits atherosclerosis progression in a mouse model of mixed dyslipidemia. Arterioscler Thromb Vasc Biol. 2006;26(12):2731–7.

    Article  CAS  PubMed  Google Scholar 

  16. Ratliff EP, Gutierrez A, Davis RA. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res. 2006;47(7):1513–20.

    Article  CAS  PubMed  Google Scholar 

  17. Vu-Dac N, Schoonjans K, Kosykh V, Dallongeville J, Fruchart JC, Staels B, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest. 1995;96(2):741–50.

    Article  CAS  PubMed  Google Scholar 

  18. Valasek MA, Clarke SL, Repa JJ. Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse. J Lipid Res. 2007;48(12):2725–35.

    Article  CAS  PubMed  Google Scholar 

  19. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA. 1993;90(6):2160–4.

    Article  CAS  PubMed  Google Scholar 

  20. Flavell DM, Ireland H, Stephens JW, Hawe E, Acharya J, Mather H, et al. Peroxisome proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes. Diabetes. 2005;54(2):582–6.

    Article  CAS  PubMed  Google Scholar 

  21. Andrulionyte L, Kuulasmaa T, Chiasson JL, Laakso M. Single nucleotide polymorphisms of the peroxisome proliferator-activated receptor-alpha gene (PPARA) influence the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes. 2007;56(4):1181–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lally S, Tan CY, Owens D, Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia. 2006;49(5):1008–16.

    Article  CAS  PubMed  Google Scholar 

  23. Lally SE, Owens D, Tomkin GH. Sitosterol and cholesterol in chylomicrons of type 2 diabetic and non-diabetic subjects: the relationship with ATP binding cassette proteins G5 and G8 and Niemann-Pick C1-like 1 mRNA. Diabetologia. 2007;50(1):217–9.

    Article  CAS  PubMed  Google Scholar 

  24. Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, et al. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm Res. 2007;24(2):390–8.

    Article  CAS  PubMed  Google Scholar 

  25. Koh S, Takada T, Kukuu I, Suzuki H. FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells. J Gastroenterol. 2009;44(6):592–600.

    Article  CAS  PubMed  Google Scholar 

  26. Latruffe N, Cherkaoui Malki M, Nicolas-Frances V, Clemencet MC, Jannin B, Berlot JP. Regulation of the peroxisomal beta-oxidation-dependent pathway by peroxisome proliferator-activated receptor alpha and kinases. Biochem Pharmacol. 2000;60(8):1027–32.

    Article  CAS  PubMed  Google Scholar 

  27. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615–22.

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, et al. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expresson. J Biol Chem. 2001;276(34):31521–7.

    Article  CAS  PubMed  Google Scholar 

  29. Farnier M, Freeman MW, Macdonell G, Perevozskaya I, Davies MJ, Mitchel YB, et al. Efficacy and safety of the coadministration of ezetimibe with fenofibrate in patients with mixed hyperlipidaemia. Eur Heart J. 2005;26(9):897–905.

    Article  CAS  PubMed  Google Scholar 

  30. McKenney JM, Farnier M, Lo KW, Bays HE, Perevozkaya I, Carlson G, et al. Safety and efficacy of long-term co-administration of fenofibrate and ezetimibe in patients with mixed hyperlipidemia. J Am Coll Cardiol. 2006;47(8):1584–7.

    Article  CAS  PubMed  Google Scholar 

  31. Montoudis A, Seidman E, Boudreau F, Beaulieu JF, Menard D, Elchebly M, et al. Intestinal fatty acid binding protein regulates mitochondrion {beta}-oxidation and cholesterol uptake. J Lipid Res. 2008;49(5):961–72.

    Article  CAS  PubMed  Google Scholar 

  32. Drover VA, Nguyen DV, Bastie CC, Darlington YF, Abumrad NA, Pessin JE, et al. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J Biol Chem. 2008;283(19):13108–15.

    Article  CAS  PubMed  Google Scholar 

  33. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282(27):19493–501.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tappei Takada.

Additional information

Yuki Iwayanagi and Tappei Takada contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwayanagi, Y., Takada, T., Tomura, F. et al. Human NPC1L1 Expression is Positively Regulated by PPARα. Pharm Res 28, 405–412 (2011). https://doi.org/10.1007/s11095-010-0294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0294-4

KEY WORDS