ABSTRACT
Purpose
Niemann-Pick C1-like 1 (NPC1L1), a pharmacological target of ezetimibe, is responsible for cholesterol absorption in enterocytes and hepatocytes. In the present study, the involvement of peroxisome proliferator-activated receptor α (PPARα) and its cofactor, PPARγ coactivator 1α (PGC1α) in the transcriptional regulation of human NPC1L1 was analyzed.
Methods
Reporter gene assays and electrophoretic mobility shift assays (EMSAs) were performed with the 5′-flanking region of the human NPC1L1 gene and the effect of siPPARα was examined.
Results
PPARα-mediated transactivation was observed with human NPC1L1 promoter constructs. Detailed analyses using deletion- and mutated-promoter constructs revealed the presence of a functional PPARα-response element (PPRE) upstream of the human NPC1L1 gene (−846/−834), a direct binding of PPARα and RXRα to which was confirmed by EMSAs. Moreover, PPARα-specific knockdown resulted in a significant decrease in the endogenous expression of NPC1L1 mRNA and protein in human-derived HepG2 cells. Furthermore, cotransfection of PGC1α stimulated the SREBP2/HNF4α- and PPARα/RXRα-mediated activation of the human NPC1L1 promoter.
Conclusions
We found that PPARα positively regulates human NPC1L1 transcription via direct binding to a PPRE. Additionally, PGC1α stimulates the SREBP2/HNF4α- and PPARα/RXRα-mediated transactivation of human NPC1L1. These findings may provide new insights into the close relationship of glucose, fatty acids and cholesterol homeostasis.






Similar content being viewed by others
Abbreviations
- BSA:
-
bovine serum albumin
- DMEM:
-
Dulbecco’s Modified Eagle Medium
- DR-1:
-
direct repeat-1
- EMSA:
-
electrophoretic mobility shift assay
- HNF4α:
-
hepatocyte nuclear factor 4α
- I-FABP:
-
intestinal-fatty acid binding protein
- NPC1L1:
-
Niemann-Pick C1-like 1
- PGC1α:
-
PPARγ coactivator 1α
- PPAR:
-
peroxisome proliferator-activated receptor
- PPRE:
-
PPARα-response element
- RXR:
-
retinoid X receptor
- SDS:
-
sodium dodecyl sulfate
- SREBP2:
-
sterol responsive element binding protein 2
- TBS-T:
-
Tris-buffered saline containing 0.05% Tween 20
REFERENCES
Altmann SW, Davis Jr HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.
Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem. 2005;280(13):12710–20.
Davis Jr HR, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279(32):33586–92.
Yamanashi Y, Takada T, Suzuki H. Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. J Pharmacol Exp Ther. 2007;320(2):559–64.
Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol. 2008;74(1):42–9.
Yamanashi Y, Takada T, Suzuki H. In-vitro characterization of the six clustered variants of NPC1L1 observed in cholesterol low absorbers. Pharmacogenet Genomics. 2009;19(11):884–92.
Takada T, Suzuki H. Molecular mechanisms of membrane transport of vitamin E. Mol Nutr Food Res. 2010;54(5):616–22.
Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA. 2005;102(23):8132–7.
Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest. 2007;117(7):1968–78.
Alrefai WA, Annaba F, Sarwar Z, Dwivedi A, Saksena S, Singla A, et al. Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: role of sterol regulatory element binding protein 2. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G369–76.
Iwayanagi Y, Takada T, Suzuki H. HNF4alpha is a crucial modulator of the cholesterol-dependent regulation of NPC1L1. Pharm Res. 2008;25(5):1134–41.
van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005;46(3):526–34.
Vrins CL, van der Velde AE, van den Oever K, Levels JH, Huet S, Oude Elferink RP, et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res. 2009;50(10):2046–54.
Duval C, Touche V, Tailleux A, Fruchart JC, Fievet C, Clavey V, et al. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun. 2006;340(4):1259–63.
Lalloyer F, Fievet C, Lestavel S, Torpier G, van der Veen J, Touche V, et al. The RXR agonist bexarotene improves cholesterol homeostasis and inhibits atherosclerosis progression in a mouse model of mixed dyslipidemia. Arterioscler Thromb Vasc Biol. 2006;26(12):2731–7.
Ratliff EP, Gutierrez A, Davis RA. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res. 2006;47(7):1513–20.
Vu-Dac N, Schoonjans K, Kosykh V, Dallongeville J, Fruchart JC, Staels B, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest. 1995;96(2):741–50.
Valasek MA, Clarke SL, Repa JJ. Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse. J Lipid Res. 2007;48(12):2725–35.
Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA. 1993;90(6):2160–4.
Flavell DM, Ireland H, Stephens JW, Hawe E, Acharya J, Mather H, et al. Peroxisome proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes. Diabetes. 2005;54(2):582–6.
Andrulionyte L, Kuulasmaa T, Chiasson JL, Laakso M. Single nucleotide polymorphisms of the peroxisome proliferator-activated receptor-alpha gene (PPARA) influence the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes. 2007;56(4):1181–6.
Lally S, Tan CY, Owens D, Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia. 2006;49(5):1008–16.
Lally SE, Owens D, Tomkin GH. Sitosterol and cholesterol in chylomicrons of type 2 diabetic and non-diabetic subjects: the relationship with ATP binding cassette proteins G5 and G8 and Niemann-Pick C1-like 1 mRNA. Diabetologia. 2007;50(1):217–9.
Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, et al. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm Res. 2007;24(2):390–8.
Koh S, Takada T, Kukuu I, Suzuki H. FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells. J Gastroenterol. 2009;44(6):592–600.
Latruffe N, Cherkaoui Malki M, Nicolas-Frances V, Clemencet MC, Jannin B, Berlot JP. Regulation of the peroxisomal beta-oxidation-dependent pathway by peroxisome proliferator-activated receptor alpha and kinases. Biochem Pharmacol. 2000;60(8):1027–32.
Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615–22.
Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, et al. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expresson. J Biol Chem. 2001;276(34):31521–7.
Farnier M, Freeman MW, Macdonell G, Perevozskaya I, Davies MJ, Mitchel YB, et al. Efficacy and safety of the coadministration of ezetimibe with fenofibrate in patients with mixed hyperlipidaemia. Eur Heart J. 2005;26(9):897–905.
McKenney JM, Farnier M, Lo KW, Bays HE, Perevozkaya I, Carlson G, et al. Safety and efficacy of long-term co-administration of fenofibrate and ezetimibe in patients with mixed hyperlipidemia. J Am Coll Cardiol. 2006;47(8):1584–7.
Montoudis A, Seidman E, Boudreau F, Beaulieu JF, Menard D, Elchebly M, et al. Intestinal fatty acid binding protein regulates mitochondrion {beta}-oxidation and cholesterol uptake. J Lipid Res. 2008;49(5):961–72.
Drover VA, Nguyen DV, Bastie CC, Darlington YF, Abumrad NA, Pessin JE, et al. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J Biol Chem. 2008;283(19):13108–15.
Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282(27):19493–501.
ACKNOWLEDGMENTS
This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Authors and Affiliations
Corresponding author
Additional information
Yuki Iwayanagi and Tappei Takada contributed equally to this work.
Rights and permissions
About this article
Cite this article
Iwayanagi, Y., Takada, T., Tomura, F. et al. Human NPC1L1 Expression is Positively Regulated by PPARα. Pharm Res 28, 405–412 (2011). https://doi.org/10.1007/s11095-010-0294-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-010-0294-4


