Skip to main content

Advertisement

Log in

Delivery of an Angiogenic Gene into Ischemic Muscle by Novel Bubble Liposomes Followed by Ultrasound Exposure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a safe and efficient gene delivery system into skeletal muscle using the combination of Bubble liposomes (BL) and ultrasound (US) exposure, and to assess the feasibility and the effectiveness of BL for angiogenic gene delivery in clinical use.

Methods

A solution of luciferase-expressing plasmid DNA (pDNA) and BL was injected into the tibialis (TA) muscle, and US was immediately applied to the injection site. The transfection efficiency was estimated by a luciferase assay. The ischemic hindlimb was also treated with BL and US-mediated intramuscular gene transfer of bFGF-expressing plasmid DNA. Capillary vessels were assessed using immunostaining. The blood flow was determined using a laser Doppler blood flow meter.

Results

Highly efficient gene transfer could be achieved in the muscle transfected with BLs, and US mediated the gene transfer. Capillary vessels were enhanced in the treatment groups with this gene transfer method. The blood flow in the treated groups with this gene transfer method quickly recovered compared to other treatment groups (non-treated, bFGF alone, or bFGF+US).

Conclusion

The gene transfer system into skeletal muscle using the combination of BL and US exposure could be an effective means for angiogenic gene therapy in limb ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Miller DG, Rutledge EA, Russell DW. Chromosomal effects of adeno-associated virus vector integration. Nat Genet. 2002;30:147–8.

    Article  PubMed  CAS  Google Scholar 

  2. Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A. 1987;84:8463–7.

    Article  PubMed  CAS  Google Scholar 

  3. Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996;22:1131–54.

    Article  PubMed  CAS  Google Scholar 

  4. Joersbo M, Brunstedt J. Protein synthesis stimulated in sonicated sugar beet cells and protoplasts. Ultrasound Med Biol. 1990;16:719–24.

    Article  PubMed  CAS  Google Scholar 

  5. Greenleaf WG, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol. 1998;24:587–95.

    Article  PubMed  CAS  Google Scholar 

  6. Schratzberger P, Krainin JG, Schratzberger G, Silver M, Ma H, Kearney M, et al. Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Mol Ther. 2002;6:576–83.

    Article  PubMed  CAS  Google Scholar 

  7. Duvshani-Eshet M, Machluf M. Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Release. 2005;108:513–28.

    Article  PubMed  CAS  Google Scholar 

  8. Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther. 1996;7:1339–46.

    Article  PubMed  CAS  Google Scholar 

  9. Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 2002;9:372–80.

    Article  PubMed  CAS  Google Scholar 

  10. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation. 2002;105:1233–9.

    Article  PubMed  CAS  Google Scholar 

  11. Li T, Tachibana K, Kuroki M, Kuroki M. Gene transfer with echo-enhanced contrast agents:comparison between Albunex, Optison, and Levovist in mice–initial results. Radiology. 2003;229:423–8.

    Article  PubMed  Google Scholar 

  12. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev. 2004;56:1291–314.

    Article  PubMed  CAS  Google Scholar 

  13. Sonoda S, Tachibana K, Uchino E, Okubo A, Yamamoto M, Sakoda K, et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest Ophthalmol Vis Sci. 2006;47:558–64.

    Article  PubMed  Google Scholar 

  14. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029:91–7.

    Article  PubMed  CAS  Google Scholar 

  15. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991;1066:29–36.

    Article  PubMed  CAS  Google Scholar 

  16. Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta. 1992;1128:44–9.

    PubMed  CAS  Google Scholar 

  17. Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, et al. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release. 2004;98:195–207.

    Article  PubMed  CAS  Google Scholar 

  18. Negishi Y, Omata D, Iijima H, Hamano N, Endo Y, Suzuki R, Maruyama K, Nomizu M, and Aramaki Y, Preparation and Characterization of Laminin-derived Peptide AG73-coated Liposomes as a Selective Gene Delivery Tool. Biol Pham. Bull. in press

  19. Suzuki R, Takizawa T, Negishi Y, Hagisawa K, Tanaka K, Sawamura K, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J Control Release. 2007;117:130–6.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Sawamura K, Tanaka K, et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Release. 2008;125:137–44.

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int J Pharm. 2008;354:49–55.

    Article  PubMed  CAS  Google Scholar 

  22. Negishi Y, Endo Y, Fukuyama T, Suzuki R, Takizawa T, Omata D, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Release. 2008;132:124–30.

    Article  PubMed  CAS  Google Scholar 

  23. Negishi Y, Omata D, Iijima H, Takabayashi Y, Suzuki K, Endo Y, et al. Enhanced laminin-derived peptide AG73-mediated liposomal gene transfer by bubble liposomes and ultrasound. Mol Pharm. 2010;7:217–26.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki R, Namai E, Oda Y, Nishiie N, Otake S, Koshima R, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release. 2010;142:245–50.

    Article  PubMed  CAS  Google Scholar 

  25. Liu F, Huang L. A syringe electrode device for simultaneous injection of DNA and electrotransfer. Mol Ther. 2002;5:323–8.

    Article  PubMed  CAS  Google Scholar 

  26. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667–79.

    PubMed  CAS  Google Scholar 

  27. Jang HS, Kim HJ, Kim JM, Lee YS, Kim KL, Kim JA, et al. A novel ex Vivo angiogenesis assay based on electroporation-mediated delivery of naked plasmid DNA to skeletal muscle. Mol Ther. 2004;9:464–74.

    Article  PubMed  CAS  Google Scholar 

  28. Koch S, Pohl P, Cobet U, Rainov NG. Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol. 2000;26:897–903.

    Article  PubMed  CAS  Google Scholar 

  29. Yang JP, Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther. 1997;4:950–60.

    Article  PubMed  CAS  Google Scholar 

  30. Shah PB, Losordo DW. Non-viral vectors for gene therapy: clinical trials in cardiovascular disease. Adv Genet. 2005;54:339–61.

    Article  PubMed  CAS  Google Scholar 

  31. Emoto M, Tachibana K, Iwasaki H, Kawarabayashi T. Antitumor effect of TNP-470, an angiogenesis inhibitor, combined with ultrasound irradiation for human uterine sarcoma xenografts evaluated using contrast color Doppler ultrasound. Cancer Sci. 2007;98:929–35.

    Article  PubMed  CAS  Google Scholar 

  32. Barzelai S, Sharabani-Yosef O, Holbova R, Castel D, Walden R, Engelberg S, et al. Low-intensity ultrasound induces angiogenesis in rat hind-limb ischemia. Ultrasound Med Biol. 2006;32:139–45.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We are grateful to Dr. Katsuro Tachibana (Department of Anatomy, School of Medicine, Fukuoka University) for technical advice regarding the induction of cavitation with US and to Mr. Yasuhiko Hayakawa, Mr. Takahiro Yamauchi, and Mr. Kosho Suzuki (NEPA GENE CO., LTD.) for technical advice regarding US exposure. This study was supported in part by the Industrial Technology Research Grant Program (04A05010) from New Energy, the Industrial Technology Development Organization (NEDO) of Japan, Grant-in-Aid for Scientific Research (B) (20300179) from the Japan Society of the Promotion of Science, and by a grant for private universities provided by the Promotion and Mutual Aid Corporation for Private Schools of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Negishi.

Additional information

Yoichi Negishi and Keiko Matsuo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negishi, Y., Matsuo, K., Endo-Takahashi, Y. et al. Delivery of an Angiogenic Gene into Ischemic Muscle by Novel Bubble Liposomes Followed by Ultrasound Exposure. Pharm Res 28, 712–719 (2011). https://doi.org/10.1007/s11095-010-0286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0286-4

KEY WORDS

Navigation