Skip to main content

Advertisement

Log in

HPMA Copolymer-Aminohexylgeldanamycin Conjugates Targeting Cell Surface Expressed GRP78 in Prostate Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study focused on the synthesis and in vitro characterization of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates for the delivery of geldanamycin to prostate cancer tumors. Conjugates were modified to incorporate WIFPWIQL peptide, which binds to cell-surface-expressed Glucose-regulated protein 78.

Methods

HPMA copolymers containing aminohexylgeldanamycin with and without WIFPWIQL peptide were synthesized and characterized, and stability in pH 7.4 and pH 5.0 buffers, complete cell culture medium, and fetal bovine serum was evaluated. The comparative cell surface expression of GRP78 in DU145 and PC3 cell lines was assessed and competitive binding to cell surface expressed GRP78 evaluated. The ability of the conjugates to inhibit cell growth was also evaluated in vitro.

Results

HPMA copolymer-aminohexylgeldanamycin conjugates were stable with maximal release observed in fetal bovine serum at 37°C of approximately 10% in 72 h. HPMA copolymers bearing WIFPWIQL peptide bound to cell surface expressed GRP78 with affinities comparable to free WIFPWIQL peptide and demonstrated increased cytotoxicity as compared to untargeted conjugates.

Conclusion

HPMA copolymer aminohexylgeldanamycin conjugates bearing WIFPWIQL peptide have the ability to bind to cell-surface-expressed GRP78 and inhibit the growth of human prostate cancer cells, suggesting that the conjugates have the potential to target solid prostate cancer tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AH-GDM:

aminohexylgeldanamycin

AIBN:

N,N’-azobisisobutyronitrile

ANOVA:

analysis of variance

DMSO:

dimethylsulfoxide

EPR:

enhanced permeability and retention

ER:

endoplasmic reticulum

FBS:

fetal bovine serum

GDM:

geldanamycin

GFLG:

Gly-Phe-Leu-Gly

GG:

Gly-Gly

GRP78:

glucose-regulated protein 78

HPLC:

high performance liquid chromatography

HPMA:

N-(2-hydroxypropyl)methacrylamide

Hsp70:

heat-shock protein 70

Hsp90:

heat-shock protein 90

HUVECs:

human umbilical vein endothelial cells

MTD:

maximum tolerated dose

ONp:

p-nitrophenol

PEG:

polyethylene glycol

RGD:

Arg-Gly-Asp

SEC:

size exclusion chromatography

TLC:

thin layer chromatography

VEGF:

vascular endothelial growth factor

WIFPWIQL:

Trp-Ile-Phe-Pro-Trp-Ile-Gln-Leu

WST-8:

2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt

REFERENCES

  1. Cancer Facts & Figures 2009, American Cancer Society, Atlanta, Georgia, 2009.

  2. Porter JR, Ge J, Lee J, Normant E, West K. Ansamycin inhibitors of Hsp90: nature's prototype for anti-chaperone therapy. Curr Top Med Chem. 2009;9:1386–418.

    Article  CAS  PubMed  Google Scholar 

  3. Fukuyo Y, Hunt CR, Horikoshi N. Geldanamycin and its anti-cancer activities. Cancer Lett. 2010;290:24–35.

    Article  CAS  PubMed  Google Scholar 

  4. Sharpand S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006;95:323–48.

    Article  Google Scholar 

  5. Banerji U. Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res. 2009;15:9–14.

    Article  CAS  PubMed  Google Scholar 

  6. Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaulation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 1994;36:305–15.

    Article  Google Scholar 

  7. Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L, et al. A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs. 2006;24:543–6.

    Article  CAS  PubMed  Google Scholar 

  8. Banerji U, O'Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol. 2005;23:4152–61.

    Article  CAS  PubMed  Google Scholar 

  9. Kopecek J, Kopeckova P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev. 2010;62:122–49.

    Article  CAS  PubMed  Google Scholar 

  10. Davis FF. The origin of pegnology. Adv Drug Deliv Rev. 2002;54:457–8.

    Article  CAS  PubMed  Google Scholar 

  11. Vicent MJ, Manzanaro S, de la Fuente JA, Duncan R. HPMA copolymer-1, 5-diazaanthraquinone conjugates as novel anticancer therapeutics. J Drug Target. 2004;12:503–15.

    Article  CAS  PubMed  Google Scholar 

  12. Seymour LW, Duncan R, Strohalm J, Kopecek J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res. 1987;21:1341–58.

    Article  CAS  PubMed  Google Scholar 

  13. Mitra A, Nan A, Ghandehari H, McNeill E, Mulholland J, Line BR. Technetium-99 m-labeled N-(2-hydroxypropyl) methacrylamide copolymers: synthesis, characterization, and in vivo biodistribution. Pharm Res. 2005;21:1153–9.

    Article  Google Scholar 

  14. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  15. Borgman MP, Ray A, Kolhatkar RB, Sausville EA, Burger AM, Ghandehari H. Targetable HPMA copolymer-aminohexylgeldanamycin conjugates for prostate cancer therapy. Pharm Res. 2009;26:1407–18.

    Article  CAS  PubMed  Google Scholar 

  16. Nan A, Nanayakkara NP, Walker LA, Yardley V, Croft SL, Ghandehari H. N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs. J Control Release. 2001;77:233–43.

    Article  CAS  PubMed  Google Scholar 

  17. Nan A, Croft SL, Yardley V, Ghandehari H. Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release. 2004;94:115–27.

    Article  CAS  PubMed  Google Scholar 

  18. Subr V, Kopecek J, Pohl J, Baudys M, Kostka V. Cleavage of oligopeptide side-chains in N-2(hydroxpropyl)meth-acrylamide copolymers by mixtures of lysosomal enzymes. J Control Release. 1988;8:133–40.

    Article  CAS  Google Scholar 

  19. D. Putnam and J. Kopeček. Polymer conjugates with anticancer activity. Biopolymers II, Vol. 122, Springer Berlin, 1995, pp. 55–123.

  20. Seymour LW, Ferry DR, Kerr DJ, Rea D, Whitlock M, Poyner R, et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol. 2009;34:1629–36.

    Article  CAS  PubMed  Google Scholar 

  21. Duncan R. Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev. 2009;61:1131–48.

    Article  CAS  PubMed  Google Scholar 

  22. Duncan R, Vicent MJ. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev. 2010;62:272–82.

    Article  CAS  PubMed  Google Scholar 

  23. Mitra A, Coleman T, Borgman M, Nan A, Ghandehari H, Line BR. Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting. J Control Release. 2006;114:175–83.

    Article  CAS  PubMed  Google Scholar 

  24. Borgman MP, Aras O, Geyser-Stoops S, Sausville EA, Ghandehari H. Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery. Mol Pharm. 2009;6:1836–47.

    Article  CAS  PubMed  Google Scholar 

  25. Pike DB, Ghandehari H. HPMA copolymer-cyclic RGD conjugates for tumor targeting. Adv Drug Deliv Rev. 2010;62:167–83.

    Article  CAS  PubMed  Google Scholar 

  26. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci U S A. 1997;94:8761–6.

    Article  CAS  PubMed  Google Scholar 

  27. Shiu RP, Pouyssegur J, Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977;74:3840–4.

    Article  CAS  PubMed  Google Scholar 

  28. Hendershot LM. The ER function BiP is a master regulator of ER function. Mt Sinai J Med. 2004;71:289–97.

    PubMed  Google Scholar 

  29. Dong D, Dubeau L, Bading J, Nguyen K, Luna M, Yu H, et al. Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible GRP 78 promoter resulting in eradication of sizable human tumors. Hum Gene Ther. 2004;15:553–61.

    Article  CAS  PubMed  Google Scholar 

  30. Misra UK, Deedwania R, Pizzo SV. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem. 2006;281:13694–707.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Liu R, Ni M, Gill P, Lee AS. Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem. 2010;285:15065–75.

    Article  CAS  PubMed  Google Scholar 

  32. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W, et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell. 2004;6:275–84.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Katanasaka, T. Ishii, T. Asai, H. Naitou, N. Maeda, F. Koizumi, S. Miyagawa, N. Ohashi, and N. Oku. Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78. Int J Cancer (Epub 2010/02/24).

  34. Wu WC, Kao YH, Hu PS, Chen JH. Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Exp Eye Res. 2007;85:721–31.

    Article  CAS  PubMed  Google Scholar 

  35. Strohalm J, Kopecek J. Poly N-(2-hydroxypropyl) methacrylamide: 4. Heterogenous polymerization. Angew Makromol Chem. 1978;70:109–18.

    Article  CAS  Google Scholar 

  36. Rejmanova P, Labsky J, Kopecek J. Aminolyses of monomeric and polymeric p-nitrophenyl esters of methacryloylated amino acids. Makromol Chem. 1977;178:2159–68.

    Article  CAS  Google Scholar 

  37. Ulbrich K, Subr V, Strohalm J, Plocova D, Jelinkova M, Rihova B. Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J Control Release. 2000;64:63–79.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JH, Kopeckova P, Kopecek J, Andrade JD. Surface properties of copolymers of alkyl methacrylates with methoxy (polyethylene oxide) methacrylates and their application as protein-resistant coatings. Biomaterials. 1990;11:455–64.

    Article  CAS  PubMed  Google Scholar 

  39. Kasuya Y, Lu ZR, Kopeckova P, Minko T, Tabibi SE, Kopecek J. Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates. J Control Release. 2001;74:203–11.

    Article  CAS  PubMed  Google Scholar 

  40. Walker JM. The protein protocols handbook. Towota: Humana; 1996.

    Book  Google Scholar 

  41. Kasuya Y, Lu ZR, Kopeckova P, Tabibi SE, Kopecek J. Influence of the structure of drug moieties on the in vitro efficacy of HPMA copolymer-geldanamycin derivative conjugates. Pharm Res. 2002;19:115–23.

    Article  CAS  PubMed  Google Scholar 

  42. Misra UK, Deedwania R, Pizzo SV. Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem. 2005;280:26278–86.

    Article  CAS  PubMed  Google Scholar 

  43. Malugin A, Kopeckova P, Kopecek J. Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells. J Control Release. 2007;124:6–10.

    Article  CAS  PubMed  Google Scholar 

  44. Guerriero R, Testa U, Gabbianelli M, Mattia G, Montesoro E, Macioce G, et al. Unilineage megakaryocytic proliferation and differentiation of purified hematopoietic progenitors in serum-free liquid culture. Blood. 1995;86:3725–36.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This research was supported by the National Institutes of Health grant R01 EB007171 and the Utah Science Technology and Research (USTAR) initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, N., Ray, A., Malugin, A. et al. HPMA Copolymer-Aminohexylgeldanamycin Conjugates Targeting Cell Surface Expressed GRP78 in Prostate Cancer. Pharm Res 27, 2683–2693 (2010). https://doi.org/10.1007/s11095-010-0267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0267-7

KEY WORDS

Navigation