Skip to main content
Log in

Pulmonary Gene Silencing in Transgenic EGFP Mice Using Aerosolised Chitosan/siRNA Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This work describes the production and application of an aerosolised formulation of chitosan nanoparticles for improved pulmonary siRNA delivery and gene silencing in mice.

Methods

Aerosolised chitosan/siRNA nanoparticles were pneumatically formed using a nebulising catheter and sized by laser diffraction. In vitro silencing of aerosolised and non-aerosolised formulations was evaluated in an EGFP endogenous-expressing H1299 cell line by flow cytometry. Non-invasive intratracheal insertion of the catheter was used to study nanoparticle deposition by histological detection of Cy3-labeled siRNA and gene silencing in transgenic EGFP mouse lungs using a flow cytometric method.

Results

Flow cytometric analysis demonstrated minimal alteration in gene silencing efficiency before (68%) and after (62%) aerosolisation in EGFP-expressing H1299 cells. Intratracheal catheter administration in mice resulted in nanoparticle deposition throughout the entire lung in both alveoli and bronchiolar regions using low amounts of siRNA. Transgenic EGFP mice dosed with the aerosolised nanoparticle formulation showed significant EGFP gene silencing (68% reduction compared to mismatch group).

Conclusions

This work provides a technology platform for effective pulmonary delivery and gene silencing of RNAi therapeutics with potential use in preclinical studies of respiratory disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Fougerolles AR, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discovery. 2007;6:443–53.

    Article  Google Scholar 

  2. Wu L, Belasco JG. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell. 2008;29:1–7.

    Article  PubMed  Google Scholar 

  3. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  4. Gao S, Hansen FD, Nielsen EJB, Wengel J, Besenbacher F, Howard KA, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther. 2009;17:1225–33.

    Article  CAS  PubMed  Google Scholar 

  5. Choung S, Kim YJ, Kim S, Park H, Choi YC. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342:919–27.

    Article  CAS  PubMed  Google Scholar 

  6. Fougerolles AR. Delivery vehicles for small interfering RNA In Vivo. Hum Gene Ther. 2008;19:125–32.

    Article  PubMed  Google Scholar 

  7. Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Delivery Rev. 2009;61:710–20.

    Article  CAS  Google Scholar 

  8. Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J. 2009;11:639–52.

    Article  CAS  PubMed  Google Scholar 

  9. Howard KA, Kjems J. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opin Biol Ther. 2007;7:1811–22.

    Article  CAS  PubMed  Google Scholar 

  10. Fougerolles AR, Novobrantseva T. siRNA and the lung: research tool or therapeutic drug? Curr Opin Pharmacol. 2008;8:280–85.

    Article  PubMed  Google Scholar 

  11. Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA. 2004;101:8676–81.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA. 2005;102:5679–84.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A, et al. Small interfering RNA targeting Heme Oxygenase-1 enhances Ischemia-Reperfusion-induced lung apoptosis. J Biol Chem. 2004;279:10677–84.

    Article  CAS  PubMed  Google Scholar 

  14. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2004;11:50–5.

    Article  PubMed  Google Scholar 

  15. Massaro D, Massaro GD, Clerch LB. Noninvasive delivery of small inhibitory RNA and other reagents to pulmonary alveoli in mice. Am J Physiol Lung Cell Mol Physiol. 2004;287:1066–70.

    Article  Google Scholar 

  16. Liu X, Howard KA, Donga M, Andersen MØ, Rahbek UL, Johnsen MG, et al. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials. 2007;28:1280–8.

    Article  CAS  PubMed  Google Scholar 

  17. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, et al. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.

    Article  CAS  PubMed  Google Scholar 

  18. Andersen MØ, Howard KA, Paludan SR, Besenbacher F, Kjems J. Delivery of siRNA from polymeric/siRNA surfaces. Biomaterials. 2008;29:506–12.

    Article  CAS  PubMed  Google Scholar 

  19. Benita MB, Zwier R, Junginger HE, Borchard G. Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. Eur J Pharm Biopharma. 2005;61:214–8.

    Article  Google Scholar 

  20. Constien R, Forde A, Liliensiek B, Gröne HJ, Nawroth P, Hämmerling G, et al. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis. 2001;30:36–44.

    Article  CAS  PubMed  Google Scholar 

  21. Valerius KP. Size-dependent morphology of the conductive bronchial tree in four species of myomorph rodents. J Morphol. 1996;230:291–7.

    Article  CAS  PubMed  Google Scholar 

  22. Höggård MK, Issa MM, Köhler T, Tronde A, Vårum KM, Artursson P. A miniaturized nebulization catheter for improved gene delivery to the mouse lung. J Gene Med. 2005;7:1215–22.

    Article  Google Scholar 

  23. Kato T, Yashiro T, Murata Y, Herbert DC, Oshikawa K, Bando M, et al. Evidence that exogenous substances can be phagocytised by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res. 2003;311:47–51.

    Article  PubMed  Google Scholar 

  24. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin and caveolae-mediated endocytosis. J Biochem. 2004;377:159–69.

    Article  CAS  Google Scholar 

  25. Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178:55–65.

    Article  CAS  PubMed  Google Scholar 

  26. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11:1358–61.

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez R, Elbashir S, Borland T, Toudjarska I, Hadwiger P, John M, et al. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother. 2009;53:3952–62.

    Article  CAS  PubMed  Google Scholar 

  28. Neira JL, Chung CS, Wesche DE, Perl M, Ayala A. In vivo gene silencing (with siRNA) of pulmonary expression of MIP-2 versus KC results in divergent effects on hemorrhage-induced, neutrophil-mediated septic acute lung injury. J Leukocyte Biol. 2005;77:846–53.

    Article  Google Scholar 

  29. Perl M, Chung CS, Neira JL, Rachel TM, Biffl WL, Cioffi WG, et al. Silencing of Fas, but not Caspase-8, in lung epithelial cells ameliorates pulmonary apoptosis, inflammation, and neutrophil influx after hemorrhagic shock and sepsis. Am J Pathol. 2005;167:1545–59.

    CAS  PubMed  Google Scholar 

  30. Robbins M, Judge A, Ambegia E, Choi C, Yaworski E, Palmer L, et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther. 2008;19:991–9.

    Article  CAS  PubMed  Google Scholar 

  31. Glud SZ, Bramsen JB, Hansen FD, Wengel J, Howard KA, Nyengaard JR, et al. Naked siLNA-mediated gene silencing of lung bronchoepithelium EGFP expression after intravenous administration. Oligonucleotides. 2009;19:163–8.

    Article  CAS  PubMed  Google Scholar 

  32. Yang W, Peters JI, Williams RO. Inhaled nanoparticles—A current review. Int J Pharm. 2008;356:239–47.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Anne Chauchereau for providing the EGFP-expressing H1299 cell line used in this work and Bernard Arnold from DKFZ, Heidelberg, Germany for providing the B6;129P2-RAGE tm1.1 mice. We are also grateful to Helmy Rachman, Kirstin Hoffman and Susan Jackisch for excellent technical assistance with the animal experiments and Uwe Klemm for supervision of the animal work. This work was supported by the Danish Research Council and the EU-FP6 RiGHT programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, E.J.B., Nielsen, J.M., Becker, D. et al. Pulmonary Gene Silencing in Transgenic EGFP Mice Using Aerosolised Chitosan/siRNA Nanoparticles. Pharm Res 27, 2520–2527 (2010). https://doi.org/10.1007/s11095-010-0255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0255-y

KEY WORDS

Navigation