Skip to main content
Log in

Inhalation Performance of Physically Mixed Dry Powders Evaluated with a Simple Simulator for Human Inspiratory Flow Patterns

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To construct a simple simulator reproducing human inspiratory flow patterns and use it to evaluate the inhalation performance of active ingredient particle-carrier particle systems (physically mixed dry powders).

Methods

Inspiratory flow patterns were collected and analyzed using a flow recorder. The simulator was constructed using an airtight container, a valve, and a connecting tube. Several of the patterns reproduced by the simulator were compared with those recorded. In addition, the influence of inspiratory flow on the inhalation performance of physically mixed dry powders composed of salbutamol sulfate (SS) and coarse lactose monohydrate was investigated using a twin-stage liquid impinger (TSLI) equipped with the simulator.

Results

Human inspiratory flow patterns could be characterized by three parameters: inspiratory flow volume (area under the flow rate-time curve (AUC)), flow increase rate (FIR), and peak flow rate (PFR). The patterns could be reproduced using the simulator. Testing with the simulator in vitro revealed that PFR, but not FIR or AUC, greatly affected the inhalation performance of physically mixed dry powders.

Conclusions

The simulator is simple to construct and can schematically reproduce human inspiratory flow patterns. Testing with a TSLI and the simulator is useful to evaluate dry powder formulations for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Adi H, Young PM, Chan HK, Stewart P, Agus H, Traini D. Cospray dried antibiotics for dry powder lung delivery. J Pharm Sci. 2008;97(8):3356–66.

    Article  CAS  PubMed  Google Scholar 

  2. Dalby R, Suman J. Inhalation therapy: technological milestones in asthma treatment. Adv Drug Deliv Rev. 2003;55(7):779–91.

    Article  CAS  PubMed  Google Scholar 

  3. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  CAS  PubMed  Google Scholar 

  4. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  5. Guenette E, Barrett A, Kraus D, Brody R, Harding L, Magee G. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design. Int J Pharm. 2009;380(1–2):80–8.

    Article  CAS  PubMed  Google Scholar 

  6. Mizuno T, Mohri K, Nasu S, Danjo K, Okamoto H. Dual imaging of pulmonary delivery and gene expression of dry powder inhalant by fluorescence and bioluminescence. J Control Release. 2009;134(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  7. Bouchard A, Jovanović N, Hofland GW, Jiskoot W, Mendes E, Crommelin DJ, et al. Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions. Eur J Pharm Biopharm. 2008;68(3):781–94.

    Article  CAS  PubMed  Google Scholar 

  8. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144(2):221–6.

    Google Scholar 

  9. Tomoda K, Ohkoshi T, Hirota K, Sonavane GS, Nakajima T, Terada H, et al. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf B Biointerfaces. 2009;71(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  10. Op’t Holt TB. Inhaled beta agonists. Respir Care. 2007;52(7):820–32.

    PubMed  Google Scholar 

  11. Okamoto H, Danjo K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv Drug Deliv Rev. 2008;60(3):433–46.

    Article  CAS  PubMed  Google Scholar 

  12. Taki M, Marriott C, Zeng XM, Martin GP. Aerodynamic deposition of combination dry powder inhaler formulations in vitro: a comparison of three impactors. Int J Pharm. 2010;388(1–2):40–51.

    Article  CAS  PubMed  Google Scholar 

  13. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27.

    PubMed  Google Scholar 

  14. Young PM, Kwok P, Adi H, Chan HK, Traini D. Lactose composite carriers for respiratory delivery. Pharm Res. 2009;26(4):802–10.

    Article  CAS  PubMed  Google Scholar 

  15. Saleem I, Smyth H, Telko M. Prediction of dry powder inhaler formulation performance from surface energetics and blending dynamics. Drug Dev Ind Pharm. 2008;34(9):1002–10.

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell J, Dalby R. Characterization of aerosol performance. In: Bechtold-Peters K, Lüssen H, editors. Pulmonary drug delivery—basics, applications and opportunities for small molecules and bio-pharmaceuticals, Chapter 5. Aulendorf: Editio Cantor Verlag; 2006. p. 282–305.

    Google Scholar 

  17. Section 2.9.18-Preparation for inhalation: aerodynamic assessment of fine particles. European Pharmacopoeia. 1997.

  18. Hoe S, Traini D, Chan HK, Young PM. Measuring charge and mass distributions in dry powder inhalers using the electrical Next Generation Impactor (eNGI). Eur J Pharm Sci. 2009;38(2):88–94.

    Article  CAS  PubMed  Google Scholar 

  19. Lee SL, Adams WP, Li BV, Conner DP, Chowdhury BA, Yu LX. In vitro considerations to support bioequivalence of locally acting drugs in dry powder inhalers for lung diseases. AAPS J. 2009;11(3):414–23.

    Article  CAS  PubMed  Google Scholar 

  20. Martin GP, Marriott C, Zeng XM. Influence of realistic inspiratory flow patterns on fine particle fractions of dry powder aerosol formulations. Pharm Res. 2007;24(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lohrmann M, Kappl M, Butt HJ, Urbanetz NA, Lippold BC. Adhesion forces in interactive mixtures for dry powder inhalers—evaluation of a new measuring method. Eur J Pharm Biopharm. 2007;67(2):579–86.

    Article  CAS  PubMed  Google Scholar 

  22. Chavan V, Dalby R. Novel system to investigate the effects of inhaled volume and rates of rise in simulated inspiratory air flow on fine particle output from a dry powder inhaler. AAPS PharmSci. 2002;4(2):E6.

    Article  PubMed  Google Scholar 

  23. Finlay WH, Gehmlich MG. Inertial sizing of aerosol inhaled from two dry powder inhalers with realistic breath patterns versus constant flow rates. Int J Pharm. 2000;210(1–2):83–95.

    Article  CAS  PubMed  Google Scholar 

  24. Zanen P, van Spiegel PI, van der Kolk H, Tushuizen E, Enthoven R. The effect of the inhalation flow on the performance of a dry powder inhalation system. Int J Pharm. 1992;81(2–3):199–203.

    Article  CAS  Google Scholar 

  25. Mitchell J, Newman S, Chan HK. In vitro and in vivo aspects of cascade impactor tests and inhaler performance: a review. AAPS PharmSciTech. 2007;8(4):E110.

    Article  PubMed  Google Scholar 

  26. Huang WH, Yang ZJ, Wu H, Wong YF, Zhao ZZ, Liu L. Development of liposomal salbutamol sulfate dry powder inhaler formulation. Biol Pharm Bull. 2010;33(3):512–7.

    Article  CAS  PubMed  Google Scholar 

  27. Iida K, Inagaki Y, Todo H, Okamoto H, Danjo K, Luenberger H. Effects of surface processing of lactose carrier particles on dry powder inhalation properties of salbutamol sulfate. Chem Pharm Bull (Tokyo). 2004;52(8):938–42.

    Article  CAS  Google Scholar 

  28. Chavan V, Dalby R. Effect of rise in simulated inspiratory flow rate and carrier particle size on powder emptying from dry powder inhalers. AAPS PharmSci. 2000;2(2):E10.

    Article  CAS  PubMed  Google Scholar 

  29. Kumon M, Machida S, Suzuki M, Kusai A, Yonemochi E, Terada K. Application and mechanism of inhalation pattern improvement of DPI formulations by mechanofusion with magnesium stearate. Chem Pharm Bull (Tokyo). 2008;56(5):617–25.

    Article  CAS  Google Scholar 

  30. Zijlstra GS, Hinrichs WL, de Boer AH, Frijlink HW. The role of particle engineering in relation to formulation and de-agglomeration principle in the development of a dry powder formulation for inhalation of cetrorelix. Eur J Pharm Sci. 2004;23(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  31. Zanen P, Laube BL. Targeting the lungs with therapeutic aerosols. In: Bisgaard H, Callaghan CO, Smaldone GC, editors. Drug delivery to the lung, Chapter 7, vol. 162. 2002. p. 211–68.

  32. de Boer AH, Winter HMI, Lerk CF. Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers Part 1. Inhalation characteristics, work of breathing and volunteers’ preference in dependence of the inhaler resistance. Int J Pharm. 1996;130(2):231–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hira, D., Okuda, T., Kito, D. et al. Inhalation Performance of Physically Mixed Dry Powders Evaluated with a Simple Simulator for Human Inspiratory Flow Patterns. Pharm Res 27, 2131–2140 (2010). https://doi.org/10.1007/s11095-010-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0215-6

KEY WORDS

Navigation