Skip to main content

Advertisement

Log in

High-Throughput Screening System for Identifying Phototoxic Potential of Drug Candidates Based on Derivatives of Reactive Oxygen Metabolites

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The present study aimed to develop a high-throughput screening strategy for predicting the phototoxic potential of pharmaceutical substances, using a derivatives-of-reactive-oxygen-metabolites (D-ROM) assay.

Methods

The assay conditions of the D-ROM assay were optimized with a focus on screening run time, sensitivity, solvent system, and reproducibility. The phototoxic potentials of 25 model compounds were assessed by the D-ROM assay, as well as by other screening systems for comparison, including the reactive oxygen species (ROS) assay, the DNA-photocleavage assay, and the 3T3 neutral red uptake phototoxicity test (3T3 NRU PT).

Results

Some phototoxic drugs tended to yield D-ROM when exposed to simulated sunlight (250 W/m2), whereas D-ROM generation was negligible for non-phototoxic chemicals. Compared with the ROS assay, the assay procedure for the D-ROM assay was highly simplified with a marked reduction in screening run time. Comparative experiments also demonstrated that D-ROM data were related to the outcomes of the DNA-photocleavage assay and the 3T3 NRU PT, with prediction accuracies of 76 and 72%, respectively.

Conclusion

The D-ROM assay has potential for identifying the phototoxic potential of a large number of new drugs as a 1st screening system in the early stages of drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3T3 NRU PT:

3T3 neutral red uptake phototoxicity test

5-FU:

5-fluorouracil

8-MOP:

8-methoxypsoralen

AFM:

atomic force microscopy

AGE:

agarose gel electrophoresis

CD:

circular dichroism

DEPPD:

N,N-diethyl-p-phenylenediamine

DMEM:

Dulbecco’s Modified Eagle Medium

D-ROM:

derivatives of reactive oxygen metabolites

EBSS:

Earle’s Balanced Salt Solution

EtBr:

ethidium bromide

ECVAM:

Europe Center for the Validation of Alternative Methods

OC:

open circular

OECD:

Organisation for Economic Co-operation and Development

PIF:

photoirritation factor

ROS:

reactive oxygen species

SC:

supercoiled

UV:

ultraviolet

VIS light:

visible light

REFERENCES

  1. Onoue S, Seto Y, Gandy G, Yamada S. Drug-induced phototoxicity; an early in vitro identification of phototoxic potential of new drug entities in drug discovery and development. Curr Drug Saf. 2009;4:123–36.

    Article  PubMed  CAS  Google Scholar 

  2. Moore DE. Drug-induced cutaneous photosensitivity: incidence, mechanism, prevention and management. Drug Saf. 2002;25:345–72.

    Article  PubMed  CAS  Google Scholar 

  3. Epstein JH, Wintroub BU. Photosensitivity due to drugs. Drugs. 1985;30:42–57.

    Article  PubMed  CAS  Google Scholar 

  4. Henry B, Foti C, Alsante K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J Photochem Photobiol B. 2009;96:57–62.

    Article  PubMed  CAS  Google Scholar 

  5. Epstein S. The Photopatch Test; Its Technique, Manifestations, And Significance. Ann Allergy. 1964;22:1–11.

    PubMed  CAS  Google Scholar 

  6. Przybilla B, Schwab-Przybilla U, Ruzicka T, Ring J. Phototoxicity of non-steroidal anti-inflammatory drugs demonstrated in vitro by a photo-basophil-histamine-release test. Photodermatol. 1987;4:73–8.

    PubMed  CAS  Google Scholar 

  7. Selvaag E. Evaluation of phototoxic properties of oral antidiabetics and diuretics. Photohemolysis model as a screening method for recognizing potential photosensitizing drugs. Arzneimittelforschung. 1997;47:1031–4.

    PubMed  CAS  Google Scholar 

  8. Portes P, Pygmalion MJ, Popovic E, Cottin M, Mariani M. Use of human reconstituted epidermis Episkin for assessment of weak phototoxic potential of chemical compounds. Photodermatol Photoimmunol Photomed. 2002;18:96–102.

    Article  PubMed  CAS  Google Scholar 

  9. Spielmann H, Liebsch M, Doring B, Moldenhauer F. First results of an EC/COLIPA validation project of in vitro phototoxicity testing methods. Altex. 1994;11:22–31.

    PubMed  Google Scholar 

  10. Sarabia Z, Hernandez D, Castell JV, van Henegouwen GM. Photoreactivity of tiaprofenic acid and suprofen using pig skin as an ex vivo model. J Photochem Photobiol B. 2000;58:32–6.

    Article  PubMed  CAS  Google Scholar 

  11. Lynch AM, Smith MD, Lane AS, Robinson SA, Kleinman MH, Kennedy-Gabb S, Wilcox P, Rees RW. An evaluation of chemical photoreactivity and the relationship to photogenotoxicity. Regul Toxicol Pharmacol. 2009; in press.

  12. Onoue S, Tsuda Y. Analytical studies on the prediction of photosensitive/phototoxic potential of pharmaceutical substances. Pharm Res. 2006;23:156–64.

    Article  PubMed  CAS  Google Scholar 

  13. Onoue S, Yamauchi Y, Kojima T, Igarashi N, Tsuda Y. Analytical studies on photochemical behavior of phototoxic substances; effect of detergent additives on singlet oxygen generation. Pharm Res. 2008;25:861–8.

    Article  PubMed  CAS  Google Scholar 

  14. Onoue S, Igarashi N, Yamada S, Tsuda Y. High-throughput reactive oxygen species (ROS) assay: an enabling technology for screening the phototoxic potential of pharmaceutical substances. J Pharm Biomed Anal. 2008;46:187–93.

    Article  PubMed  CAS  Google Scholar 

  15. Onoue S, Igarashi N, Kitagawa F, Otsuka K, Tsuda Y. Capillary electrophoretic studies on the photogenotoxic potential of pharmaceutical substances. J Chromatogr A. 2008;1188:50–6.

    Article  PubMed  CAS  Google Scholar 

  16. Onoue S, Seto Y, Oishi A, Yamada S. Novel methodology for predicting photogenotoxic risk of pharmaceutical substances based on reactive oxygen species (ROS) and DNA-binding assay. J Pharm Sci. 2009;98:3647–58.

    Article  PubMed  CAS  Google Scholar 

  17. Gocke E, Albertini S, Chetelat AA, Kirchner S, Muster W. The photomutagenicity of fluoroquinolones and other drugs. Toxicol Lett. 1998;102–103:375–81.

    Article  PubMed  Google Scholar 

  18. Onoue S, Kawamura K, Igarashi N, Zhou Y, Fujikawa M, Yamada H et al. Reactive oxygen species assay-based risk assessment of drug-induced phototoxicity: classification criteria and application to drug candidates. J Pharm Biomed Anal. 2008;47:967–72.

    Article  PubMed  CAS  Google Scholar 

  19. Hayashi I, Morishita Y, Imai K, Nakamura M, Nakachi K, Hayashi T. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutat Res. 2007;631:55–61.

    PubMed  CAS  Google Scholar 

  20. Salardi S, Zucchini S, Elleri D, Grossi G, Bargossi AM, Gualandi S et al. High glucose levels induce an increase in membrane antioxidants, in terms of vitamin E and coenzyme Q10, in children and adolescents with type 1 diabetes. Diab Care. 2004;27:630–1.

    Article  Google Scholar 

  21. Cornelli U, Terranova R, Luca S, Cornelli M, Alberti A. Bioavailability and antioxidant activity of some food supplements in men and women using the D-Roms test as a marker of oxidative stress. J Nutr. 2001;131:3208–11.

    PubMed  CAS  Google Scholar 

  22. Alberti A, Bolognini L, Macciantelli D, Caratelli M. The radical cation of N,N-diethyl-para-phenylendiamine: a possibe indicator of oxidative stress in biological samples. Res Chem Intermed. 2000;26:253–67.

    Article  CAS  Google Scholar 

  23. Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985;24:119–24.

    Article  PubMed  CAS  Google Scholar 

  24. Peters B, Holzhutter HG. In vitro phototoxicity testing: development and validation of a new concentration response analysis software and biostatistical analyses related to the use of various prediction models. Altern Lab Anim. 2002;30:415–32.

    PubMed  CAS  Google Scholar 

  25. Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4:67–73.

    Article  PubMed  Google Scholar 

  26. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54:659.

    Article  PubMed  CAS  Google Scholar 

  27. Hei TK, Liu SX, Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci USA. 1998;95:8103–7.

    Article  PubMed  CAS  Google Scholar 

  28. Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental organic chemistry. New York: Wiley; 1993.

    Google Scholar 

  29. Keum YS, Kim JH, Kim YW, Kim K, Li QX. Photodegradation of diafenthiuron in water. Pest Manag Sci. 2002;58:496–502.

    Article  PubMed  CAS  Google Scholar 

  30. Epe B. Genotoxicity of singlet oxygen. Chem Biol Interact. 1991;80:239–60.

    Article  PubMed  CAS  Google Scholar 

  31. Rega MF, Reed JC, Pellecchia M. Robust lanthanide-based assays for the detection of anti-apoptotic Bcl-2-family protein antagonists. Bioorg Chem. 2007;35:113–20.

    Article  PubMed  CAS  Google Scholar 

  32. Dubakiene R, Kupriene M. Scientific problems of photosensitivity. Medicina (Kaunas). 2006;42:619–24.

    Google Scholar 

  33. Gould JW, Mercurio MG, Elmets CA. Cutaneous photosensitivity diseases induced by exogenous agents. J Am Acad Dermatol. 1995;33:551–73. quiz 574–6.

    Article  PubMed  CAS  Google Scholar 

  34. Allen JE. Drug-induced photosensitivity. Clin Pharm. 1993;12:580–7.

    PubMed  CAS  Google Scholar 

  35. Brendler-Schwaab S, Czich A, Epe B, Gocke E, Kaina B, Muller L et al. Photochemical genotoxicity: principles and test methods. Report of a GUM task force. Mutat Res. 2004;566:65–91.

    Article  PubMed  CAS  Google Scholar 

  36. Liebsch M, Spielmann H. Currently available in vitro methods used in the regulatory toxicology. Toxicol Lett. 2002;127:127–34.

    Article  PubMed  CAS  Google Scholar 

  37. EMEA Report. Committee for propriety medicinal products (CPMP). Notes for guidance on photosafety testing CPMP/SWP/398/01. http://www.emea.europa.eu/pdfs/human/swp/039801en.pdf; 2002.

  38. Stein KR, Scheinfeld NS. Drug-induced photoallergic and phototoxic reactions. Expert Opin Drug Saf. 2007;6:431–43.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid from the Food Safety Commission, Japan (No. 0807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoue, S., Ochi, M., Gandy, G. et al. High-Throughput Screening System for Identifying Phototoxic Potential of Drug Candidates Based on Derivatives of Reactive Oxygen Metabolites. Pharm Res 27, 1610–1619 (2010). https://doi.org/10.1007/s11095-010-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0161-3

KEY WORDS

Navigation