Skip to main content
Log in

Thermosensitive Micelles from PEG-Based Ether-anhydride Triblock Copolymers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The thermosensitive micelles based on the poly(PEG:CPP:SA) terpolymer composed of poly(ethylene glycol) (PEG), 1,3-bis(carboxyphenoxy) propane (CPP) and sebacic acid (SA) were fabricated for application as a promising drug carrier.

Methods

The terpolymer can self-assemble into micelles in water by a precipitation technology. The sol–gel transition behaviors were investigated by the tube-tilting method and dynamic rheology. The drug release behaviors were investigated in phosphate-buffered solution (PBS) at 25, 37 and 45°C, respectively, and the tumor cell growth inhibition assays were also evaluated.

Results

The diameters of these micelles increased as the environmental temperature, and the length of CPP and SA chains increased. The micelles with a low concentration underwent sol-to-nanogel transition as temperature increased from the room temperature to the body temperature, while the polymer solutions with a high concentration underwent sol-to-gel transition as the temperature increased from 20 to 70°C. In vitro release profiles consisted of a burst release followed a sustained release. The cytotoxicity results showed that the terpolymer micelles were biocompatible, and the encapsulated doxorubicin. HCl maintained its potent anti-tumor effect.

Conclusion

These micelles may bring the ether-anhydride family of polymers great potential as a novel carrier in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Basarkar A, Singh J. Poly (lactide-co-glycolide)-polymethacrylate micellles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res. 2009;26:72–81.

    Article  PubMed  CAS  Google Scholar 

  2. Allen TM, Cullis PR. Drug delivery systems: entering the main stream. Science 2004;303:1818–22.

    Article  PubMed  CAS  Google Scholar 

  3. Hu XL, Liu S, Chen XS. Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: synthesis and characterization. Biomacromolecules 2008;9:553–60.

    Article  PubMed  CAS  Google Scholar 

  4. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J Control Release. 2006;24:119–32.

    Google Scholar 

  5. Branco MC, Schneider JP. Review:Self-assembling materials for therapeutic delivery. Acta Biomaterialia. 2009;5:817–31.

    Article  PubMed  CAS  Google Scholar 

  6. Cai SS, Vijayan KS, Cheng D, Lima EM, Discher DE. Micelles of different morphologies—advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res. 2007;24:2099–109.

    Article  PubMed  CAS  Google Scholar 

  7. Martini L, Attwood D, Collett J. The bioadhesive properties of a triblock copolymer of ε-caprolactone and ethylene oxide. Int J Pharm. 2005;113:223–9.

    Article  Google Scholar 

  8. Cohn D, Salomon AH. Biodegradable multiblock PEO/PLA thermoplastic elastomers:molecular design and properties. Polymer 2005;46:2068–75.

    Article  CAS  Google Scholar 

  9. Lavasanifar A, Samue J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2005;54:169–90.

    Article  Google Scholar 

  10. Rapoport N. Combined cancer therapy by micellar-encapsulated drug and ultrasound, nanotechnology for cancer therapy. Boca Raton. 2006;2:417–37.

    Google Scholar 

  11. Vakil R, Kwo GS. Poly(ethyleneglycol)-b-poly(ε-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Langmuir 2006;22:9723–9.

    Article  PubMed  CAS  Google Scholar 

  12. Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 2001;32:7064–9.

    Article  CAS  Google Scholar 

  13. Joo MK, Sohn YS, Jeong B. Stereoisomeric effect on reverse thermal gelation of poly(ethylene glycol)/poly(lactide)multiblock copolymer. Macromolecules 2007;40:5111–5.

    Article  CAS  Google Scholar 

  14. Yang L, Xian ZZ, Wei J, Suming L. Micelles formed by self-assembling of polylactide/poly(ethylene glycol) block copolymers in aqueous solutions. J Colloid Interface Sci. 2007;31:4470–7.

    Google Scholar 

  15. Wang YP, Xu HP, Zhang X. Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials. Adv Mater. 2009;21:2849–64.

    Article  CAS  Google Scholar 

  16. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitives upramolecular as semblies for intra cellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl. 2003;42:4640–3.

    Article  PubMed  CAS  Google Scholar 

  17. Webber GB, Wanless EJ, Armes SP, Tang YQ, Li YT, Biggs S. Nano-anemones:stimulus-responsive copolymer-micelle surfaces. Adv Mater. 2004;16:1794–8.

    Article  CAS  Google Scholar 

  18. Dong Y, Feng SS. Methoxypoly (ethyleneglycol)-poly(lactide)(MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004;25:2843–9.

    Article  PubMed  CAS  Google Scholar 

  19. Chen G, Hoffman AS. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995;373:49(R)–52.

    Google Scholar 

  20. Liu TY, Hu SH, Liu DM, Chen SY, Chen IW. Review: biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today. 2009;4:52–65.

    Article  CAS  Google Scholar 

  21. Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release. 1987;6:297–305.

    Article  CAS  Google Scholar 

  22. Peppas NA, Bures P. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2005;50:27–46.

    Article  Google Scholar 

  23. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;43:3–12.

    Article  Google Scholar 

  24. Farhood N, Mohammad N. Biodegradable micelles/polymersomes from fumaric/sebacic acids and poly(ethylene glycol). Biomaterials 2006;24:1175–82.

    Google Scholar 

  25. Cohn D, Lando G, Sosnik A, Garty S, Levi A. PEO-PPO-PEO based poly(ether ester urethane)s as degradable thermo-responsive multiblock copolymers. Biomaterials 2006;27:1718–27.

    Article  PubMed  CAS  Google Scholar 

  26. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860–2.

    Article  PubMed  CAS  Google Scholar 

  27. Zana R, Binanalimb W, Kamenka N. Ethyl(hydroxyethyl) cellulose cationic surfactant interactions-electricalconductivity, self-diffusion, and time-resolved fluorescence, quenching investigations. J Phys Chem. 2007;96:5461–5.

    Article  Google Scholar 

  28. Kamenka N, Burgaud L, Zana R. Electricalconductivity, self-diffusion, and fluorescence probe investigations of the interaction between sodium dodecyl-sulfate and ethyl(hydroxyethyl) cellulose. J Phys Chem. 2004;98:6785–9.

    Article  Google Scholar 

  29. Kim IS, Lee SK, Park YM, Lee YB, Shin SC, Lee KC et al. Physicochemical characterization of poly(L-lactic acid) and poly(D, L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int J Pharm. 2005;298:255–62.

    Article  PubMed  CAS  Google Scholar 

  30. Karnik R, Gu F, Basto P. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008;8:2906–12.

    Article  PubMed  CAS  Google Scholar 

  31. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2004;47:113–31.

    Article  Google Scholar 

  32. Fiegel J, Fu J, Hanes J. Synthesis and characterization of PEG-based ether-anhydride terpolymers: novel polymers for controlled drug delivery. Macromolecules 2004;37:7174–80.

    Article  CAS  Google Scholar 

  33. Zhang N, Guo SR. Synthesis and micellization of amphiphilic poly(sebacic anhydride)-poly(ethylene glycol)-poly(sebacic anhydride) block copolymers. J Polym Sci Part: A. 2006;44:1271–8.

    Article  CAS  Google Scholar 

  34. Lee JS, Joo MK, Oh HJ. Injectable gel: poly(ethylene glycol)-sebacic acid polyester. Polymer 2006;47:3760–6.

    Article  CAS  Google Scholar 

  35. Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 1983;4:131–3.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao C, Wang Y, Winnik MA, Riess G, Croucher MD. Fluorescenceprobe technique used to study micelle formation in water-soluble block co-polymer. Langmuir 1999;6:514–6.

    Article  Google Scholar 

  37. Forrest M, Won CY, Malick A, Kwon G. In vitro release of poly(ethylene glycol)-b-poly(ε-caprolactone)micelle. J Control Release. 2006;110:370–7.

    Article  PubMed  CAS  Google Scholar 

  38. Fiegel J, Fu J, Hanes J. Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs. J Control Release. 2004;96:411–23.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Zhao ZX, Wei J. Micelles formed by self-assembling of polylactide/poly(ethylene glycol) block copolymers in aqueous solutions. J Colloid Interface Sci. 2007;314:470–7.

    Article  CAS  Google Scholar 

  40. Adams M, Lavasanifar A, Kwon G. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2005;92:1343–55.

    Article  Google Scholar 

  41. Kabanov A, Alakhov V. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug. 2007;19:1–72.

    Article  Google Scholar 

  42. Zhang L, Eisenberg A. Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylicacid)block copolymers. Science 1995;268:1728–31.

    Article  PubMed  CAS  Google Scholar 

  43. Cabra H, Nakanishi M, Kumagai M, Jang WD, Nishiyama N, Kataoka K. A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles. Pharm Res. 2007;24:2099–109.

    Article  CAS  Google Scholar 

  44. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–90.

    Article  CAS  Google Scholar 

  45. Oh KT, Bronich TK, Kabanov AV. Micellar formulationsfor drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release. 2004;94:411–22.

    Article  PubMed  CAS  Google Scholar 

  46. Zhe J, Sun X, Moon H, Soo Y. Thermosensitive micelles from PEGylated oligopeptides. Polymer 2007;48:3673–8.

    Article  CAS  Google Scholar 

  47. Yan H, Yong HY, Zhou F. Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyethe, core. J Polym Sci Part: A. 2008;46:668–81.

    Google Scholar 

  48. Fraylich F, Wang WX, Sheff KS, Alexander C, Saunders B. Poly(D,L-lactide-co-glycolide) dispersions containing pluronics: from particle preparation to temperature-triggered aggregation. Langmuir 2008;24:7761–8.

    Article  PubMed  CAS  Google Scholar 

  49. Tang Y, Singh J. Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein. Int J Pharm. 2009;365:34–43.

    Article  PubMed  CAS  Google Scholar 

  50. Gong Y, Shi S, Wu L, Gou ML, Yin QQ, Guo QF et al. Biodegradable in situ gel-forming controlled drug delivery systembased on thermosensitive PCL–PEG–PCL hydrogel. Part 2: sol–gel–sol transition and drug delivery behavior. Acta Biomater. 2009;5:3358–70.

    Article  PubMed  CAS  Google Scholar 

  51. Nagahama KJ, Imai YC, Nakayama T, Ohmura J, Ouchi T, Ohya Y. Thermo-sensitive sol–gel transition of poly(depsipeptideco-lactide)-g-PEG copolymers in aqueous solution. Polymer 2009;23:1–9.

    Google Scholar 

  52. Yu L, Chang GT, Zhang H, Ding JD. Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J Polym Sci Part: A. 2007;45:1122–33.

    Article  CAS  Google Scholar 

  53. Mata JP, Majhi PR, Guo C, Liu HZ, Bahadur P. Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J Colloid Interface Sci. 2005;292:548–56.

    Article  PubMed  CAS  Google Scholar 

  54. Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: an overview. Euro J Pharm Biopharm. 2004;58:445–55.

    Article  CAS  Google Scholar 

  55. Lasic DD. Doxorubicin in sterically stabilized liposomes. Nature 1996;380:561–2.

    Article  PubMed  CAS  Google Scholar 

  56. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7tumor. J Control Release. 2005;103:405–18.

    Article  PubMed  CAS  Google Scholar 

  57. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96:273–83.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was partially supported by National Natural Science Foundation of China (30970723), Programs for New Century Excellent Talents in university, Ministry of Education of China (NCET-07-0719) and Sichuan Prominent Young Talent Program (08ZQ026-040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, A., Zhou, S., Zhou, Q. et al. Thermosensitive Micelles from PEG-Based Ether-anhydride Triblock Copolymers. Pharm Res 27, 1627–1643 (2010). https://doi.org/10.1007/s11095-010-0155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0155-1

KEY WORDS

Navigation