Skip to main content

Advertisement

Log in

In Situ Artificial Membrane Permeation Assay under Hydrodynamic Control: Permeability-pH Profiles of Warfarin and Verapamil

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the permeation of two ionisable drug molecules, warfarin and verapamil, across artificial membranes. For the first time since the introduction of the parallel artificial membrane permeation assay (PAMPA) in 1998, in situ permeation-time profiles of drug molecules are studied.

Methods

The method employs a rotating-diffusion cell where the donor and acceptor compartments are separated by a lipid-impregnated artificial membrane. The permeation of the solute is investigated under well-defined hydrodynamic conditions with control over the unstirred water layer. The flux of the permeating molecule is analysed in situ using UV spectrophotometry.

Results

In situ permeation-time profiles are obtained under hydrodynamic control and used to determine permeability coefficients. An advanced analytical transport model is derived to account for the membrane retention, two-way flux and pH gradient between the two compartments. Moreover, a numerical permeation model was developed to rationalise the time-dependent permeation profiles. The membrane permeability, intrinsic permeability and unstirred water permeability coefficients of two drug molecules are obtained from two independent methods, hydrodynamic extrapolation and pH profiling, and the results are compared.

Conclusions

Both warfarin and verapamil exhibit high permeability values, which is consistent with the high fraction absorbed in human. Our results demonstrate that a considerable lag-time, varying with the solute lipophilicity and stirring rate, exists in membrane permeation and leads to incorrect compound ranking if it is not treated properly. Comparison of the permeability data as a function of pH and stirring rate suggests that some transport of the ionized molecules occurs, most likely via ion-pairing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

membrane area

α :

hydrodynamic exponent

BM-PAMPA:

bio-mimetic PAMPA

c(t):

time-dependent solute concentration

Caco-2:

colorectal adenocarcinoma cell epithelial line

CHES:

2-(Cyclohexylamino)ethanesulfonic acid

D aq :

aqueous diffusion coefficient

D m :

membrane diffusion coefficient

DOPC:

dioleoyl phosphatidylcholine

DOPC-PAMPA:

dioleoyl phosphatidylcholine PAMPA

DS-PAMPA:

double-sink PAMPA

f n :

neutral fraction of the solute

h :

membrane thickness

HDM-PAMPA:

hexadecane PAMPA

IAM:

immobilised artificial membrane

J(t):

time-dependent solute flux

K d :

distribution coefficient

K OCT :

octanol/water distribution coefficient

MDCK:

Madin-Darby canine kidney epithelial cell line

P :

(not specified) permeability coefficient

P 0 :

intrinsic permeability coefficient

PAMPA:

parallel artificial membrane permeation assay

P e :

effective (measured) permeability coefficient

P m :

membrane permeability coeffcient

PTFE:

polytetrafluoroethylene

P u :

unstirred water layer permeability coefficient

PVDF:

polyvinylidene fluoride

R :

fractional membrane retention

t :

time

UWL:

unstirred water layer

V :

volume

δ UWL :

unstirred water layer thickness

ν :

kinematic viscosity

τ LAG :

lag-time

REFERENCES

  1. Fade V. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J Pharm Sci. 1998;87:1604–7.

    Article  Google Scholar 

  2. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (CACO-2) cells. Biochem Biophys Res Commun. 1991;17:880–5.

    Article  Google Scholar 

  3. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88:28–33.

    Article  PubMed  CAS  Google Scholar 

  4. Galinis-Luciani D, Nguyen L, Yazdanian M. Is PAMPA a useful tool for discovery? J Pharm Sci. 2007;96:2886–92.

    Article  PubMed  CAS  Google Scholar 

  5. Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K et al. PAMPA - Critical factors for better predictions of absorption. J Pharm Sci. 2007;96:2893–909.

    Article  PubMed  CAS  Google Scholar 

  6. Avdeef A. The rise of PAMPA. Expert Opin Drug Metab Toxicol. 2005;1:325–42.

    Article  PubMed  CAS  Google Scholar 

  7. Mälkia A, Murtomäki L, Urtti A, Kontturi K. Drug permeation in biomembranes: In vitro and in silico prediction and influence of physicochemical properties. Eur J Pharm Sci. 2004;23:13–47.

    Article  PubMed  CAS  Google Scholar 

  8. Avdeef A. Absorption and Drug Development: Solubility, Permeability, and Charge State, Wiley-Interscience, 2003.

  9. Avdeef A. High-throughput measurement of permeability profiles, Drug Bioavailability, Wiley-VCH Weinheim, 2003.

  10. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41:1007–10.

    Article  PubMed  CAS  Google Scholar 

  11. Kansy M, Fischer H, Kratzat K, Senner F, Wagner B, and Parilla I. High-Throughput Artificial Membrane Permeability Studies in Early Lead Discovery and Development, Pharmacokinetic Optimization in Drug Research. Helvetic Chim Acta. 2001.

  12. Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I. Drug absorption in vitro model: Filter-immobilized artificial membranes: 2. Studies of the permeability properties of lactones in Piper methysticum Forst. Eur J Pharm Sci. 2001;14:271–80.

    Article  PubMed  CAS  Google Scholar 

  13. Bermejo M, Avdeef A, Ruiz A, Nalda R, Ruell JA, Tsinman O et al. PAMPA - a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur J Pharm Sci. 2004;21:429–41.

    Article  PubMed  CAS  Google Scholar 

  14. Avdeef A, Nielsen PE, Tsinman O. PAMPA - A drug absorption in vitro model: 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci. 2004;22:365–74.

    PubMed  CAS  Google Scholar 

  15. Sugano K, Hamada H, Machida M, Ushio H, Saitoh K, Terada K. Optimized conditions of bio-mimetic artificial membrane permeation assay. Int J Pharm. 2001;228:181–8.

    Article  PubMed  CAS  Google Scholar 

  16. Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm. 2003;257:245–51.

    Article  PubMed  CAS  Google Scholar 

  17. Sugano K, Takata N, Machida M, Saitoh K, Terada K. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int J Pharm. 2002;241:241–51.

    Article  PubMed  CAS  Google Scholar 

  18. Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44:923–30.

    Article  PubMed  CAS  Google Scholar 

  19. Faller B, Grimm HP, Loeuillet-Ritzler F, Arnold S, Briand X. High-throughput lipophilicity measurement with immobilized artificial membranes. J Med Chem. 2005;48:2571–6.

    Article  PubMed  CAS  Google Scholar 

  20. Chen X, Murawski A, Patel K, Crespi CL, Balimane PV. A novel design of artificial membrane for improving the PAMPA model. Pharm Res. 2008;25:1511–20.

    Article  PubMed  CAS  Google Scholar 

  21. Flaten GE, Skar M, Luthman K, Brandl M. Drug permeability across a phospholipid vesicle based barrier: 3. Characterization of drug-membrane interactions and the effect of agitation on the barrier integrity and on the permeability. Eur J Pharm Sci. 2007;30:324–32.

    Article  PubMed  CAS  Google Scholar 

  22. Flaten GE, Dhanikula AB, Luthman K, Brandl M. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci. 2006;27:80–90.

    Article  PubMed  CAS  Google Scholar 

  23. Flaten GE, Bunjes H, Luthman K, Brandl M. Drug permeability across a phospholipid vesicle-based barrier. 2. Characterization of barrier structure, storage stability and stability towards pH changes. Eur J Pharm Sci. 2006;28:336–43.

    Article  PubMed  CAS  Google Scholar 

  24. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem. 2003;38:223–32.

    Article  PubMed  CAS  Google Scholar 

  25. Przybylo M, Olzynska A, Han S, Ozyhar A, Langner M. A fluorescence method for determining transport of charged compounds across lipid bilayer. Biophys Chem. 2007;129:120–5.

    Article  PubMed  CAS  Google Scholar 

  26. Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S. Electrokinetic migration across artificial liquid membranes. Tuning the membrane chemistry to different types of drug substances. J Chrom. 2006;1124:29–34.

    Article  CAS  Google Scholar 

  27. Balon K, Riebesehl BU, Müller BW. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm Res. 1999;16:882–8.

    Article  PubMed  CAS  Google Scholar 

  28. Seo PR, Teksin ZS, Kao JPY, Polli JE. Lipid composition effect on permeability across PAMPA. Eur J Pharm Sci. 2006;29:259–68.

    Article  PubMed  CAS  Google Scholar 

  29. Avdeef A, Artursson P, Neuhoff S, Lazorova L, Gråsjö J, Tavelin S. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pKa flux method. Eur J Pharm Sci. 2005;24:333–49.

    Article  PubMed  CAS  Google Scholar 

  30. Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NFH. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: Uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci. 1995;84:1197–204.

    Article  PubMed  CAS  Google Scholar 

  31. Karlsson J, Artursson P. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int J Pharm. 1991;71:55–64.

    Article  CAS  Google Scholar 

  32. Lennernäs H. Human intestinal permeability. J Pharm Sci. 1998;87:403–10.

    Article  PubMed  Google Scholar 

  33. Molloy BJ, Tam KY, Wood JM, Dryfe RAW. A hydrodynamic approach to the measurement of the permeability of small molecules across artificial membranes. Analyst. 2008;133:655–9.

    Article  PubMed  CAS  Google Scholar 

  34. Mayer PT, Anderson BD. Transport across 1, 9-decadiene precisely mimics the chemical selectivity of the barrier domain in egg lecithin bilayers. J Pharm Sci. 2002;91:640–6.

    Article  PubMed  CAS  Google Scholar 

  35. Levich VG. Physicochemical hydrodynamics. London: Englewood Cliffs; 1962.

    Google Scholar 

  36. Albery WJ, Burke JF, Leffler EB, Hadgraft J. Interfacial transfer studied with a rotating diffusion cell. J Chem Soc Faraday Trans I. 1976;72:1618–26.

    Article  CAS  Google Scholar 

  37. Guyand RH, Honda DH. Solute transport resistance at the octanol - water interface. Int J Pharm. 1984;19:129–37.

    Article  Google Scholar 

  38. Leahy DE, Wait AR. Solute transport resistance at water-oil interfaces. J Pharm Sci. 1986;75:1157–61.

    Article  PubMed  CAS  Google Scholar 

  39. Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71:77–84.

    Article  PubMed  CAS  Google Scholar 

  40. Shore PA, Brodie BB, Hogben CAM. The gastric secretion of drugs - a pH partition hypothesis. J Pharmacol Exp Ther. 1957;119:361–9.

    PubMed  CAS  Google Scholar 

  41. Atkins P, de Paula J. Physical chemistry for the life sciences. Oxford University Press, 2006.

  42. Charcosset C, Bernengo JC. Comparison of microporous membrane morphologies using confocal scanning laser microscopy. J Membr Sci. 2000;168:53–62.

    Article  CAS  Google Scholar 

  43. Sarveiya V, Templeton JF, Benson HAE. Ion-pairs of ibuprofen: Increased membrane diffusion. J Pharm Pharmacol. 2004;56:717–24.

    Article  PubMed  CAS  Google Scholar 

  44. Takacs-Novak K, Szasz G. Ion-pair partition of quaternary ammonium drugs: the influence of counter ions of different lipophilicity, size, and flexibility. Pharm Res. 1999;16:1633–8.

    Article  PubMed  CAS  Google Scholar 

  45. Neubert R. Ion pair transport across membranes. Pharm Res. 1989;6:743–7.

    Article  PubMed  CAS  Google Scholar 

  46. Dollery CT. Therapeutic drugs. Churchill Livingstone, 1999.

  47. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in human for 670 drug compounds. Drug Metab Dispos. 2008;36:1385–405.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank our industrial collaborator, AstraZeneca, and EPSRC for funding and Dr. J. Matthew Wood (AstraZeneca, Alderley Park) for consultation and training in the industrial PAMPA method.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kin Y. Tam or Robert A. W. Dryfe.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Appendix

(DOC 1812 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velický, M., Bradley, D.F., Tam, K.Y. et al. In Situ Artificial Membrane Permeation Assay under Hydrodynamic Control: Permeability-pH Profiles of Warfarin and Verapamil. Pharm Res 27, 1644–1658 (2010). https://doi.org/10.1007/s11095-010-0150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0150-6

KEY WORDS

Navigation