ABSTRACT
Purpose
To measure aerosol performance of a lactose carrier/salbutamol sulphate powder blend and identify contributions of non-formulation and formulation components on the resulting aerosol charge.
Methods
A 67.5:1 (%w/w) blend of 63–90 μm lactose with salbutamol sulphate, and lactose alone (with and without the blending process), was dispersed from a Cyclohaler™ into the electrical Next Generation Impactor at 30, 60 and 90 L/min. Mass and charge profiles were measured from each dispersion, as a function of impactor stage. The charge profile from an empty capsule in the Cyclohaler™ was also studied.
Results
Lactose deposition from the blend was significantly greater, and net charge/mass ratios were smaller, in the pre-separator compared to formulations without drug. Fine particle fraction of salbutamol sulphate increased with flow rate (9.2 ± 2.5% to 14.7 ± 2.7%), but there was no change in net charge/mass ratio. The empty capsule produced a cycle of alternating net positive and negative discharges (∼200 pC to 4 nC).
Conclusions
Capsule charge can ionize surrounding air and influence net charge measurements. Detachment of fine drug during aerosolisation may reduce net specific charge and lead to increased lactose deposition in the pre-separator. Increase in FPF may be due to increased force of detachment rather than electrostatic forces.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.REFERENCES
Islam N, Stewart P, Larson I, Hartley P. Surface roughness contribution to the adhesion force distribution of salmeterol xinafoate on lactose carriers by atomic force microscopy. J Pharm Sci. 2005;94:1500–11.
Young PM, Kwok P, Adi H, Chan H-K, Traini D. Lactose composite carriers for repiratory delivery. Pharm Res. 2009;26:802–10.
Harjunen P, Lankinen T, Salonen H, Lehto V-P, Järvinen K. Effects of carriers and storage of formulation on the lung deposition of a hydrophobic and hydrophilic drug from a DPI. Int J Pharm. 2003;263:151–63.
Young PM, Sung A, Traini D, Kwok P, Chiou H, Chan H-K. Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhalers carrier-based systems. Pharm Res. 2007;24:963–70.
Lohrmann M, Kappl M, Butt H-J, Urbanetz NA, Lippold BC. Adhesion forces in interactive mixtures for dry powder inhalers—evaluation of a new measuring method. Eur J Pharm Biopharm. 2007;67:579–86.
Zeng XM, Martin GP, Marriott C, Pritchard J. Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery. J Pharm Sci. 2001;90:1424–34.
Islam N, Stewart P, Larson I, Hartley P. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J Pharm Sci. 2004;93:1030–8.
Tee SK, Marriott C, Zeng XM, Martin GP. The use of different sugars as fine and coarse carriers for aerosolised salbutamol sulphate. Int J Pharm. 2000;208:111–23.
Adi H, Larson I, Chiou H, Young P, Traini D, Stewart P. Role of agglomeration in the dispersion of salmeterol xinafoate from mixtures for inhalation with differing drug to fine lactose ratios. J Pharm Sci. 2007;97:3140–52.
Zeng XM, Martin GP, Marriott C, Pritchard J. The effects of carrier size and morphology on the dispersion of salbutamol sulphate after aerosolization at different flow rates. J Pharm Pharmacol. 2000;52:1211–21.
Zeng XM, Martin GP, Marriott C, Pritchard J. The influence of carrier morphology on drug delivery by dry powder inhalers. Int J Pharm. 2000;200:93–106.
Adi H, Traini D, Chan H-K, Young PM. The influence of drug morphology on aerosolisation efficiency of dry powder inhaler formulations. J Pharm Sci. 2007;97:2780–8.
Melandri C, Tarroni G, Prodi V, de Zaiacomo T, Formignani M, Lombardi CC. Deposition of charged particles in the human airways. J Aerosol Sci. 1983;14:657–69.
Prodi V, Mularoni A. Electrostatic lung deposition experiments with humans and animals. Ann Occup Hyg. 1985;29:229–40.
Bailey AG, Hashish AH, Williams TJ. Drug delivery by inhalation of charged particles. J Electrostat. 1998;44:3–10.
Balachandran W, Machowski W, Gaura E, Hudson C. Control of drug aerosol in human airways using electrostatic forces. J Electrostat. 1997;40 & 41:579–84.
Byron PR, Peart J, Staniforth J. Aerosol electrostatics I: properties of fine powders before and after aerosolisation by dry powder inhalers. Pharm Res. 1997;14:698–705.
Chow KT, Zhu K, Tan RBH, Heng PWS. Investigation of electrostatic behavior of a lactose carrier for dry powder inhalers. Pharm Res. 2008;25:2822–34.
Kwok PCL, Chan H-K. Effect of relative humidity on the electrostatic charge properties of dry powder inhaler aerosols. Pharm Res. 2008;25:277–88.
Telko MJ, Kujanpää J, Hickey AJ. Investigation of triboelectric charging in dry powder inhalers using electrical low pressure impactor (ELPI). Int J Pharm. 2007;336:352–60.
Crampton M, Kinnersley R, Ayres J. Sub-micrometer particle production by pressurised metered dose inhalers. J Aerosol Med. 2004;17:33–42.
Glover W, Chan H-K. Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impactor (ELPI). J Aerosol Sci. 2004;35:755–64.
Keskinen J, Pietarinen K, Lehtimäki M. Electrical low pressure impactor. J Aerosol Sci. 1992;23:353–60.
Chapter <601>. United States Pharmacopoeia 31—National Formulary 26, United States Pharmacopoeial Convention Inc., 2008.
Section 2.9.18—Appendix XII C. Consistency of formulated preparations for inhalation., British Pharmacopoeia, Vol. IV, 2009.
Hoe S, Traini D, Chan H-K, Young P. The influence of flow rate on the aerosol deposition profile and electrostatic charge of single and combination metered dose inhalers. Pharm Res. 2009;26:2639–46.
Hoe S, Traini D, Chan H-K, Young PM. Measuring charge and mass distributions in dry powder inhalers using the electrical Next Generation Impactor (eNGI). Eur J Pharm Sci. 2009;38:88–94.
Hoe S, Young PM, Chan H-K, Traini D. Introduction of the electrical Next Generation Impactor (eNGI) and investigation of its capabilities for the study of pressurized metered dose inhalers. Pharm Res. 2009;26:431–7.
Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, van Oort M et al. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: design. J Aerosol Med. 2003;16:283–99.
Lowell J, Rose-Innes AC. Contact electrification. Adv Phys. 1980;29:947–1023.
Zeng XM, Martin GP, Tee S-K, Marriott C. The role of fine particle lactose on the dispersion and deaggregation of salbutamol sulphate in an air stream in vitro. Int J Pharm. 1998;176:99–110.
Young PA, Edge S, Traini D, Jones MD, Price R, El-Sabawi D et al. The influence of dose on the performance of dry powder inhalation systems. Int J Pharm. 2005;296:26–33.
Traini D, Young PM, Thielmann F, Acharya M. The influence of lactose pseudopolymorphic form on salbutamol sulfate-lactose interactions in DPI formulations. Drug Dev Ind Pharm. 2008;34:992–1001.
ACKNOWLEDGEMENTS
The authors would like to thank GlaxoSmithKline Australia for the provision of a postgraduate support grant, and Dr. Handoko Adi for assistance with SEM imaging.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hoe, S., Traini, D., Chan, HK. et al. The Contribution of Different Formulation Components on the Aerosol Charge in Carrier-Based Dry Powder Inhaler Systems. Pharm Res 27, 1325–1336 (2010). https://doi.org/10.1007/s11095-010-0115-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-010-0115-9

