Pharmaceutical Research

, Volume 27, Issue 6, pp 962–978 | Cite as

Apigenin: A Promising Molecule for Cancer Prevention

  • Sanjeev Shukla
  • Sanjay GuptaEmail author
Expert Review


Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid shown to possess anti-inflammatory, antioxidant and anticancer properties. Epidemiologic studies suggest that a diet rich in flavones is related to a decreased risk of certain cancers, particularly cancers of the breast, digestive tract, skin, prostate and certain hematological malignancies. It has been suggested that apigenin may be protective in other diseases that are affected by oxidative process, such as cardiovascular and neurological disorders, although more research needs to be conducted in this regard. Human clinical trials examining the effect of supplementation of apigenin on disease prevention have not been conducted, although there is considerable potential for apigenin to be developed as a cancer chemopreventive agent.


apigenin apoptosis cell cycle chemoprevention flavonoids 



apoptotic protease activating factor 1


androgen receptor


casein kinase


DNA fragmentation factor


epidermal growth factor receptor


estrogen receptor


extracellular signal-activated kinase


hypoxia-inducible factor


Inhibitor of differentiation or DNA binding protein


insulin-like growth factor


insulin-like growth factor binding protein




mitogen-activated protein kinase


mixed lineage leukemia


nuclear factor-kappaB


ornithine decarboxylase


poly (ADP-ribose) polymerase


phosphatidylinositol 3-kinase


phorbol 12-myristate 13-acetate




superoxide dismutase


tumor necrosis factor




vascular endothelial growth factor



The original work from author’s laboratory outlined in this chapter was supported by United States Public Health Service Grants RO1 CA108512, RO1 AT002709 and RO3 CA137667 (SS) and funds from Cancer Research and Prevention Foundation to SG.


  1. 1.
    Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Austoker J. Cancer prevention in primary care. Current trends and some prospects for the future. BMJ. 1994;309:517–20.PubMedGoogle Scholar
  3. 3.
    Hajjar RR. Cancer in the elderly: is it preventable? Clin Geriatr Med. 2004;20:293–316.PubMedCrossRefGoogle Scholar
  4. 4.
    Mackey S. Promoting lifestyle modification for cancer prevention. J Am Diet Assoc. 2004;104:1568–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113:71S–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Lippman SM, Hong WK. Cancer prevention science and practice. Cancer Res. 2002;62:5119–25.PubMedGoogle Scholar
  7. 7.
    Gupta S. Prostate cancer chemoprevention: current status and future prospects. Toxicol Appl Pharmacol. 2007;224:369–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Heederik D, Kromhout H, Burema J, Biersteker K, Kromhout D. Occupational exposure and 25-year incidence rate of non-specific lung disease: the Zutphen Study. Int J Epidemiol. 1990;19:945–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Knekt P, Järvinen R, Seppänen R, Hellövaara M, Teppo L, Pukkala E, et al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol. 1997;146:223–30.PubMedGoogle Scholar
  10. 10.
    Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr Cancer. 1994;22:175–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Rossi M, Negri E, Lagiou P, Talamini R, Dal Maso L, Montella M, et al. Flavonoids and ovarian cancer risk: a case-control study in Italy. Int J Cancer. 2008;123:895–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bosetti C, Spertini L, Parpinel M, Gnagnarella P, Lagiou P, Negri E, et al. Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev. 2005;14:805–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoensch H, Groh B, Edler L, Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol. 2008;14:2187–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol. 2007;30:233–45.PubMedGoogle Scholar
  15. 15.
    Hertog MG, Kromhout D, Aravanis C, et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995;155:381–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18:75–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Johannot L, Somerset SM. Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr. 2006;9:1045–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheung ZH, Leung MC, Yip HK, Wu W, Siu FK, So KF. A neuroprotective herbal mixture inhibits caspase-3-independent apoptosis in retinal ganglion cells. Cell Mol Neurobiol. 2008;28:137–55.PubMedCrossRefGoogle Scholar
  19. 19.
    McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res. 2006;20:519–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Bevilacqua L, Buiarelli F, Coccioli F, Jasionowska R. Identification of compounds in wine by HPLC-tandem mass spectrometry. Ann Chim. 2004;94:679–89.PubMedCrossRefGoogle Scholar
  21. 21.
    Gerhauser C. Beer constituents as potential cancer chemopreventive agents. European J Cancer. 2005;41:1941–54.CrossRefGoogle Scholar
  22. 22.
    Svehlikova V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004;65:2323–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287:914–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim HY, Kim OH, Sung MK. Effects of phenol-depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. J Am Coll Nutr. 2003;22:217–23.PubMedGoogle Scholar
  25. 25.
    Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC. Molecularly targeted agents: their promise as cancer chemopreventive interventions. Eur J Cancer. 2005;41:2003–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447–55.PubMedGoogle Scholar
  29. 29.
    Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130:2243–50.PubMedGoogle Scholar
  31. 31.
    Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, et al. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998;67:255–62.PubMedGoogle Scholar
  32. 32.
    Kuo ML, Lin JK. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat Res. 1992;270:87–95.PubMedGoogle Scholar
  33. 33.
    Middleton JR E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.PubMedGoogle Scholar
  34. 34.
    Birt DF, Mitchell D, Gold B, Pour P, Pinch HC. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 1997;17:85–91.PubMedGoogle Scholar
  35. 35.
    Van Dross R, Xue Y, Knudson A, Pelling JC. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. J Nutr. 2003;133:3800S–4.PubMedGoogle Scholar
  36. 36.
    Wei H, Tye L, Bresnick E, Birt DF. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 1990;50:499–502.PubMedGoogle Scholar
  37. 37.
    Myhrstad MC, Carlsen H, Nordstrom O, Blomhoff R, Moskaug JO. Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med. 2002;32:386–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20:1945–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawai M, Hirano T, Higa S, Arimitsu J, Maruta M, Kuwahara Y, et al. Favonoids and related compounds as anti-allergic substances. Allergol Int. 2007;56:113–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Yano S, Umeda D, Yamashita T, Ninomiya Y, Sumida M, Fujimura Y, et al. Dietary flavones suppress IgE and Th2 cytokines in OVA-immunized BALB/c mice. Eur J Nutr. 2007;46:257–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi JS, Choi YJ, Park SH, Kang JS, Kang YH. Flavones mitigate tumor necrosis factor-alpha-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-kappa B. J Nutr. 2004;4:1013–9.Google Scholar
  42. 42.
    Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36:838–49.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee SF, Lin JK. Inhibitory effects of phytopolyphenols on TPA-induced transformation, PKC activation, and c-jun expression in mouse fibroblast cells. Nutr Cancer. 1997;28:177–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Lin JK, Chen YC, Huang YT, Lin-Shiau SY. Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J Cell Biochem Suppl. 1997;28–29:39–48.PubMedCrossRefGoogle Scholar
  45. 45.
    Mounho BJ, Thrall BD. The extracellular signal-regulated kinase pathway contributes to mitogenic and antiapoptotic effects of peroxisome proliferators in vitro. Toxicol Appl Pharmacol. 1999;159:125–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007;6:1102–14.PubMedGoogle Scholar
  47. 47.
    Carrillo C, Cafferatam EG, Genovese J, O’Reilly M, Roberts AB, Santa-Coloma TA. TGF-beta1 up-regulates the mRNA for the Na+/Ca2+ exchanger in neonatal rat cardiac myocytes. Cell Mol Biol. 1998;44:543–51.PubMedGoogle Scholar
  48. 48.
    Yin F, Giuliano AE, Van Herle AJ. Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO). Anticancer Res. 1999;19:4297–303.PubMedGoogle Scholar
  49. 49.
    Hessenauer A, Montenarh M, Gotz C. Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells. Int J Oncol. 2003;22:1263–70.PubMedGoogle Scholar
  50. 50.
    Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE, et al. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem. 2001;227:153–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess RD. Flavonoids activate wild-type p53. Oncogene. 1996;13:1605–14.PubMedGoogle Scholar
  52. 52.
    Lepley DM, Pelling JC. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog. 1997;19:74–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene. 2002;21:3727–38.PubMedCrossRefGoogle Scholar
  54. 54.
    Shukla S, Gupta S. Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog. 2004;39:114–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Iwashita K, Kobori M, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem. 2000;64:1813–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Hirano T, Oka K, Akiba M. Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line, ZR-75-1. Res Commun Chem Pathol Pharmacol. 1989;64:69–78.PubMedGoogle Scholar
  58. 58.
    Lindenmeyer F, Li H, Menashi S, Soria C, Lu H. Apigenin acts on the tumor cell invasion process and regulates protease production. Nutr Cancer. 2001;39:139–47.PubMedCrossRefGoogle Scholar
  59. 59.
    Panes J, Gerritsen ME, Anderson DC, Miyasaka M, Granger DN. Apigenin inhibits tumor necrosis factor-induced intercellular adhesion molecule-1 upregulation in vivo. Microcirculation. 1996;3:279–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Piantelli M, Rossi C, Iezzi M, La Sorda R, Iacobelli S, Alberti S, et al. Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. J Cell Physiol. 2006;207:23–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Osada M, Imaoka S, Funae Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett. 2004;575:59–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005;19:342–53.PubMedCrossRefGoogle Scholar
  63. 63.
    Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G. Aromatase and 17 beta-hydroxysteroid dehydrogenase inhibition by flavonoids. Cancer Lett. 1998;133:101–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Hiremath SP, Badami S, Hunasagatta SK, Patil SB. Antifertility and hormonal properties of flavones of Striga orobanchioides. Eur J Pharmacol. 2000;391:193–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia. 2006;8:896–904.PubMedCrossRefGoogle Scholar
  66. 66.
    Shukla S, Mishra A, Fu P, MacLennan GT, Resnick MI, Gupta S. Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J. 2005;19:2042–4.PubMedGoogle Scholar
  67. 67.
    Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, et al. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Research. 2007;67:6925–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Menichincheri M, Ballinari D, Bargiotti A, Bonomini L, Ceccarelli W, D’Alessio R, et al. Catecholic flavonoids acting as telomerase inhibitors. J Med Chem. 2004;47:6466–75.PubMedCrossRefGoogle Scholar
  69. 69.
    Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 2005;280:5636–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003;89:529–38.PubMedCrossRefGoogle Scholar
  71. 71.
    Reiners Jr JJ, Clift R, Mathieu P. Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis. 1999;20:1561–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem. 2004;279:4479–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI, et al. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res. 2007;13:1019–28.PubMedCrossRefGoogle Scholar
  74. 74.
    Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.PubMedCrossRefGoogle Scholar
  75. 75.
    O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC. Molecularly targeted agents: Their promise as cancer chemopreventive interventions. Eur J Cancer. 2005;41:2003–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447–55.PubMedGoogle Scholar
  78. 78.
    Scott EN, Gescher AJ, Steward WP, Brown K. Development of dietary phytochemical chemopreventive agents: biomarkers and choice of dose for early clinical trials. Cancer Prev Res (Phila Pa). 2009;2:525–30.Google Scholar
  79. 79.
    Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130:2243–50.PubMedGoogle Scholar
  80. 80.
    Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, et al. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998;67:255–62.PubMedGoogle Scholar
  81. 81.
    Way TD, Kao MC, Lin JK. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005;579:145–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Weldon CB, McKee A, Collins-Burow BM, Melnik LI, Scandurro AB, McLachlan JA, et al. PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling. Int J Oncol. 2005;26:763–8.PubMedGoogle Scholar
  83. 83.
    Choi EJ, Kim GH. Apigenin Induces Apoptosis through a Mitochondria/Caspase-Pathway in Human Breast Cancer MDA-MB-453 Cells. J Clin Biochem Nutr. 2009;44:260–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Choi EJ, Kim GH. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep. 2009;22:1533–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Yin F, Giuliano AE, Law RE, Van Herle AJ. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 2001;21:413–20.PubMedGoogle Scholar
  86. 86.
    Choi EJ, Kim GH. Apigenin causes G (2)/M arrest associated with the modulation of p21 (Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J Nutr Biochem. 2009;20:285–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang C, Kurzer MS. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr Cancer. 1997;28:236–47.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang C, Kurzer MS. Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors. Nutr Cancer. 1998;31:90–100.PubMedCrossRefGoogle Scholar
  89. 89.
    Collins-Burow BM, Burow ME, Duong BN, McLachlan JA. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and-independent mechanisms. Nutr Cancer. 2000;38:229–44.PubMedCrossRefGoogle Scholar
  90. 90.
    Long X, Fan M, Bigsby RM, Nephew KP. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol Cancer Ther. 2008;7:2096–108.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21:1263–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Stroheker T, Picard K, Lhuguenot JC, Canivenc-Lavier MC, Chagnon MC. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol. 2004;42:887–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Seo HS, DeNardo DG, Jacquot Y, Laïos I, Vidal DS, Zambrana CR, et al. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer Res Treat. 2006;99:121–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Van Meeuwen JA, Korthagen N, de Jong PC, Piersma AH, Van den Berg M. (Anti) estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl Pharmacol. 2007;221:372–83.PubMedCrossRefGoogle Scholar
  95. 95.
    Menendez JA, Vazquez-Martin A, Oliveras-Ferraros C, Garcia-Villalba R, Carrasco-Pancorbo A, Fernandez-Gutierrez A, et al. Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. Int J Mol Med. 2008;22:433–9.PubMedGoogle Scholar
  96. 96.
    Chen T, Li LP, Lu XY, Jiang HD, Zeng S. Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J Agric Food Chem. 2007;55:273–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee SH, Ryu JK, Lee KY, Woo SM, Park JK, Yoo JW, et al. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008;259:39–49.PubMedCrossRefGoogle Scholar
  98. 98.
    Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005;76:1367–79.PubMedCrossRefGoogle Scholar
  99. 99.
    Czyz J, Madeja Z, Irmer U, Korohoda W, Hulser DF. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int J Cancer. 2005;114:12–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Wu C, Chen F, Rushing JW, Wang X, Kim HJ, Huang G, et al. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines. J Med Food. 2006;9:55–61.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinog. 2000;28:102–10.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart JW, Birt DF. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr Cancer. 2004;48:106–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol. 2005;26:185–9.PubMedGoogle Scholar
  104. 104.
    Chung CS, Jiang Y, Cheng D, Birt DF. Impact of adenomatous polyposis coli (APC) tumor supressor gene in human colon cancer cell lines on cell cycle arrest by apigenin. Mol Carcinog. 2007;46:773–82.PubMedCrossRefGoogle Scholar
  105. 105.
    Farah M, Parhar K, Moussavi M, Eivemark S, Salh B. 5, 6-Dichloro-ribifuranosylbenzimidazole- and apigenin-induced sensitization of colon cancer cells to TNF-alpha-mediated apoptosis. Am J Physiol Gastrointest Liver Physiol. 2003;285:919–28.Google Scholar
  106. 106.
    Au A, Li B, Wang W, Roy H, Koehler K, Birt D. Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr Cancer. 2006;54:243–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Svehlikova V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004;65:2323–32.PubMedCrossRefGoogle Scholar
  108. 108.
    Al-Fayez M, Cai H, Tunstall R, Steward WP, Gescher AJ. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemother Pharmacol. 2006;58:816–25.PubMedCrossRefGoogle Scholar
  109. 109.
    Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI. Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol. 2006;72:681–92.PubMedCrossRefGoogle Scholar
  110. 110.
    Navarro-Núñez L, Lozano ML, Palomo M, Martínez C, Vicente V, Castillo J, et al. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem. 2008;56:2970–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol. 2005;69:1421–32.PubMedCrossRefGoogle Scholar
  112. 112.
    Abaza L, Talorete TP, Yamada P, Kurita Y, Zarrouk M, Isoda H. Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Biosci Biotechnol Biochem. 2007;71:1306–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Monasterio A, Urdaci MC, Pinchuk IV, Lopez-Moratalla N, Martinez-Irujo J. Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpain-dependent pathways. J Nutr Cancer. 2004;50:90–100.CrossRefGoogle Scholar
  114. 114.
    Horvathova K, Novotny L, Vachalkova A. The free radical scavenging activity of four flavonoids determined by the comet assay. Neoplasma. 2003;50:291–5.PubMedGoogle Scholar
  115. 115.
    Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA. 2000;97:4790–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Li ZD, Liu LZ, Shi X, Fang J, Jiang BH. Benzo[a]pyrene-3, 6-dione inhibited VEGF expression through inducing HIF-1alpha degradation. Biochem Biophys Res Commun. 2007;357:517–23.PubMedCrossRefGoogle Scholar
  117. 117.
    Watanabe N, Hirayama R, Kubota N. The chemopreventive flavonoid apigenin confers radiosensitizing effect in human tumor cells grown as monolayers and spheroids. J Radiat Res (Tokyo). 2007;48:45–50.CrossRefGoogle Scholar
  118. 118.
    Lee WJ, Chen WK, Wang CJ, Lin WL, Tseng TH. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. 2008;226:178–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Engelmann C, Blot E, Panis Y, Bauer S, Trochon V, Nagy HJ, et al. Apigenin–strong cytostatic and anti-angiogenic action in vitro contrasted by lack of efficacy in vivo. Phytomedicine. 2002;9:489–95.PubMedCrossRefGoogle Scholar
  120. 120.
    Fang J, Zhou Q, Liu LZ, Xia C, Hu X, Shi X, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis. 2007;28:858–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhu F, Liu XG, Liang NC. Effect of emodin and apigenin on invasion of human ovarian carcinoma HO-8910PM cells in vitro. Ai Zheng. 2003;22:358–62.PubMedGoogle Scholar
  122. 122.
    Hu XW, Meng D, Fang J. Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis. 2008;29:2369–76.PubMedCrossRefGoogle Scholar
  123. 123.
    Li ZD, Hu XW, Wang YT, Fang J. Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett. 2009;583:1999–2003.PubMedCrossRefGoogle Scholar
  124. 124.
    Knowles LM, Zigrossi DA, Tauber RA, Hightower C, Milner JA. Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr Cancer. 2000;38:116–22.PubMedCrossRefGoogle Scholar
  125. 125.
    Lee SC, Kuan CY, Yang CC, Yang SD. Bioflavonoids commonly and potently induce tyrosine dephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells. Anticancer Res. 1998;18:1117–21.PubMedGoogle Scholar
  126. 126.
    Morrissey C, O’Neill A, Spengler B, Christoffel V, Fitzpatrick JM, Watson RW. Apigenin drives the production of reactive oxygen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells. Prostate. 2005;63:131–42.PubMedCrossRefGoogle Scholar
  127. 127.
    Shukla S, Gupta S. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res. 2004;10:3169–78.PubMedCrossRefGoogle Scholar
  128. 128.
    Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 2006;5:843–52.PubMedCrossRefGoogle Scholar
  129. 129.
    Shukla S, Gupta S. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med. 2008;44:1833–45.PubMedCrossRefGoogle Scholar
  130. 130.
    Shukla S, Gupta S. Apigenin suppresses insulin-like growth factor I receptor signaling in human prostate cancer: an in vitro and in vivo study. Mol Carcinog. 2009;48:243–52.PubMedCrossRefGoogle Scholar
  131. 131.
    Kaur P, Shukla S, Gupta S. Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis. 2008;29:2210–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Mirzoeva S, Kim ND, Chiu K, Franzen CA, Bergan RC, Pelling JC. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mol Carcinog. 2008;47:686–700.PubMedCrossRefGoogle Scholar
  133. 133.
    Franzen CA, Amargo E, Todorović V, Desai BV, Huda S, Mirzoeva S, et al. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev Res (Phila Pa). 2009;2(9):830–41.Google Scholar
  134. 134.
    McVean M, Xiao H, Isobe K, Pelling JC. Increase in wild-type p53 stability and transactivational activity by the chemopreventive agent apigenin in keratinocytes. Carcinogenesis. 2000;21:633–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Li B, Birt DF. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res. 1996;13:1710–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Li B, Pinch H, Birt DF. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res. 1996;13:1530–4.PubMedCrossRefGoogle Scholar
  137. 137.
    Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2007;27:283–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Van Dross RT, Hong X, Essengue S, Fischer SM, Pelling JC. Modulation of UVB-induced and basal cyclooxygenase-2 (COX-2) expression by apigenin in mouse keratinocytes: role of USF transcription factors. Mol Carcinog. 2007;46:303–14.PubMedCrossRefGoogle Scholar
  139. 139.
    Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87:595–600.PubMedCrossRefGoogle Scholar
  140. 140.
    Schroder-van der Elst JP, van der Heide D, Romijn JA, Smit JW. Differential effects of natural flavonoids on growth and iodide content in a human Na+/I-symporter-transfected follicular thyroid carcinoma cell line. Eur J Endocrinol. 2004;150:557–64.PubMedCrossRefGoogle Scholar
  141. 141.
    O’Toole SA, Sheppard BL, Sheils O, O'Leary JJ, Spengler B, Christoffel V. Analysis of DNA in endometrial cancer cells treated with phyto-estrogenic compounds using comparative genomic hybridisation microarrays. Planta Med. 2005;71:435–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Wu K, Yuan LH, Xia W. Inhibitory effects of apigenin on the growth of gastric carcinoma SGC-7901 cells. World J Gastroenterol. 2005;11:4461–4.PubMedGoogle Scholar
  143. 143.
    Eaton EA, Walle UK, Lewis AJ, Hudson T, Wilson AA, Walle T. Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase: Potential role in drug metabolism and chemoprevention. Drug Metab Dispos. 1996;24:232–7.PubMedGoogle Scholar
  144. 144.
    Watjen W, Weber N, Lou YJ, Wang ZQ, Chovolou Y, Kampkotter A, et al. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol. 2007;45:119–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Yee SB, Lee JH, Chung HY, Im KS, Bae SJ, Choi JS, et al. Inhibitory effects of luteolin isolated from Ixeris sonchifolia Hance on the proliferation of HepG2 human hepatocellular carcinoma cells. Arch Pharm Res. 2003;26:151–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Jeyabal PV, Syed MB, Venkataraman M, Sambandham JK, Sakthisekaran D. Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog. 2005;44:11–20.PubMedCrossRefGoogle Scholar
  147. 147.
    Sanderson JT, Hordijk J, Denison MS, Springsteel MF, Nantz MH, Van den Berg M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci. 2004;82:70–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Ohno S, Shinoda S, Toyoshima S, Nakazawa H, Makino T, Nakajin S. Effects of flavonoid phytochemicals on cortisol production and on activities of steroidogenic enzymes in human adrenocortical H295R cells. J Steroid Biochem Mol Biol. 1999;80:355–63.CrossRefGoogle Scholar
  149. 149.
    Torkin R, Lavoie JF, Kaplan DR, Yeger H. Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther. 2005;4:1–11.PubMedGoogle Scholar
  150. 150.
    Das A, Banik NL, Ray SK. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer. 2006;119:2575–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Urology & NutritionCase Western Reserve UniversityClevelandUSA
  2. 2.Department of UrologyUniversity Hospitals Case Medical CenterClevelandUSA
  3. 3.Division of General Medical SciencesCase Comprehensive Cancer CenterClevelandUSA

Personalised recommendations