Skip to main content

Advertisement

Log in

Phenethyl Isothiocyanate Sensitizes Androgen-Independent Human Prostate Cancer Cells to Docetaxel-Induced Apoptosis In Vitro and In Vivo

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present study was undertaken to determine efficacy of phenethyl isothiocyanate (PEITC) for sensitization of androgen-independent human prostate cancer cells (AIPC) to Docetaxel-induced apoptosis using cellular and xenograft models.

Methods

Cell viability was determined by trypan blue dye exclusion assay. Microscopy and DNA fragmentation assay were performed to quantify apoptotic cell death in cultured cells. Protein levels were determined by immunoblotting. PC-3 prostate cancer xenograft model was utilized to determine in vivo efficacy of the PEITC and/or Docetaxel treatments.

Results

Pharmacologic concentrations of PEITC augmented Docetaxel-induced apoptosis in PC-3 and DU145 cells in association with suppression of Bcl-2 and XIAP protein levels and induction of Bax and Bak. The PEITC-Docetaxel combination was markedly more efficacious against PC-3 xenograft in vivo compared with PEITC or Docetaxel alone. Significantly higher counts of apoptotic bodies were also observed in tumor sections from mice treated with the PEITC-Docetaxel combination compared with PEITC or Docetaxel alone. The PEITC and/or Docetaxel-mediated changes in the levels of apoptosis regulating proteins in the tumor were generally consistent with the molecular alterations observed in cultured cells.

Conclusion

These results offer obligatory impetus to test PEITC-Docetaxel combination for the treatment of AIPC in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegal R, Ward E, et al. Cancer statistics 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. Ross RK, Henderson BE. Do diet and androgens alter prostate cancer risk via a common etiologic pathway. J Natl Cancer Inst. 1994;86:252–4.

    Article  CAS  PubMed  Google Scholar 

  3. Whittemore AS, Kolonel LN, Wu AH, et al. Prostate cancer in relation to diet, physical activity, and body size in blacks, whites and Asians in the United States and Canada. J Natl Cancer Inst. 1995;87:652–61.

    Article  CAS  PubMed  Google Scholar 

  4. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–81.

    Article  CAS  PubMed  Google Scholar 

  5. Kantoff P. Recent progress in management of advanced prostate cancer. Oncology. 2005;19:631–6.

    PubMed  Google Scholar 

  6. Labrie F, Dupont A, Belanger A, et al. New approaches in the treatment of prostate cancer: complete instead of partial withdrawal of androgens. Prostate. 1983;4:579–94.

    Article  CAS  PubMed  Google Scholar 

  7. Laufer M, Denmeade SR, Sinibaldi VJ, Carducci MA, Eisenberger MA. Complete androgen blockade for prostate cancer. What went wrong? J Urol. 2000;164:3–9.

    Article  CAS  PubMed  Google Scholar 

  8. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.

    Article  CAS  PubMed  Google Scholar 

  9. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.

    Article  PubMed  Google Scholar 

  10. Tamura K, Furihata M, Tsunoda T, et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 2007;67:5117–25.

    Article  CAS  PubMed  Google Scholar 

  11. Jin RJ, Lho Y, Connelly L, et al. The nuclear factor-κB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res. 2008;68:6762–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. New Eng J Med. 2004;351:1502–12.

    Article  CAS  PubMed  Google Scholar 

  13. Petrylak DP. New paradigms for advanced prostate cancer. Rev Urol. 2007;9 Suppl 2:S3–S12.

    PubMed  Google Scholar 

  14. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003;66:1022–37.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH. Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 2005;65:6934–42.

    Article  CAS  PubMed  Google Scholar 

  16. Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev. 1996;5:733–48.

    CAS  PubMed  Google Scholar 

  17. Kolonel LN, Hankin JH, Whittemore AS, et al. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev. 2000;9:795–804.

    CAS  PubMed  Google Scholar 

  18. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem. 2001;56:5–51.

    Article  CAS  Google Scholar 

  19. Wattenberg LW. Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst. 1977;58:395–8.

    CAS  PubMed  Google Scholar 

  20. Morse MA, Amin SG, Hecht SS, Chung FL. Effects of aromatic isothiocyanates on tumorigenicity, O6-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Res. 1989;49:2894–7.

    CAS  PubMed  Google Scholar 

  21. Stoner GD, Morrissey DT, Heur YH, Daniel EM, Galati AJ, Wagner SA. Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res. 1991;51:2063–8.

    CAS  PubMed  Google Scholar 

  22. Chen YR, Han J, Kori R, Kong AN, Tan TH. Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase. J Biol Chem. 2002;277:39334–42.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao D, Singh SV. Phenethyl isothiocyanate-induced apoptosis in p53-deficient PC-3 human prostate cancer cell line is mediated by extracellular signal-regulated kinases. Cancer Res. 2002;62:3615–9.

    CAS  PubMed  Google Scholar 

  24. Zhang Y, Tang L, Gonzalez V. Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol Cancer Ther. 2003;2:1045–52.

    CAS  PubMed  Google Scholar 

  25. Xiao D, Johnson CS, Trump DL, Singh SV. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells. Mol Cancer Ther. 2004;3:567–75.

    CAS  PubMed  Google Scholar 

  26. Xiao D, Choi S, Lee YJ, Singh SV. Role of mitogen-activated protein kinases in phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Mol Carcinog. 2005;43:130–40.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao D, Zeng Y, Choi S, Lew KL, Nelson JB, Singh SV. Caspase dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable derived cancer chemopreventive agent, is mediated by Bak and Bax. Clin Cancer Res. 2005;11:2670–9.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao D, Lew KL, Zeng Y, et al. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinog. 2006;27:2223–34.

    Article  CAS  Google Scholar 

  29. Bommareddy A, Hahm ER, Xiao D, et al. Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res. 2009;69:3704–12.

    Article  CAS  PubMed  Google Scholar 

  30. Xu C, Shen G, Chen C, Gelinas C, Kong AN. Suppression of NF-kB and NF-kB-regulated gene expression by sulforaphane and PEITC through IkBa, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 2005;24:4486–95.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao D, Singh SV. Phenethyl isothiocyanate inhibits angiogenesis in vivo and ex vivo. Cancer Res. 2007;67:2239–46.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao D, Choi S, Johnson DE, et al. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene. 2004;23:5594–606.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao D, Powolny AA, Singh SV. Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger ROS-dependent apoptosis in human breast cancer cells. J Biol Chem. 2008;283:30151–63.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao D, Srivastava SK, Lew KL, et al. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinog. 2003;24:891–7.

    Article  CAS  Google Scholar 

  35. Xiao D, Lew KL, Kim Y, et al. Diallyl trisulfide suppresses growth of PC-3 human prostate cancer xenograft in vivo in association with Bax and Bak induction. Clin Cancer Res. 2006;12:6836–43.

    Article  Google Scholar 

  36. Singh SV, Mohan RR, Agarwal R, et al. Novel anti-carcinogenic activity of an organosulfide from garlic: inhibition of H-RAS oncogene transformed tumor growth in vivo by diallyl disulfide is associated with inhibition of p21H-ras processing. Biochem Biophys Res Commun. 1996;225:660–5.

    Article  CAS  PubMed  Google Scholar 

  37. Singh SV, Powolny AA, Stan SD, et al. Garlic constituent diallyl trisulfide prevents development of poorly-differentiated prostate cancer and pulmonary metastasis multiplicity in TRAMP mice. Cancer Res. 2008;68:9503–11.

    Article  CAS  PubMed  Google Scholar 

  38. Lee HY, Oh SH, Suh Ya, et al. Response of non-small cell lung cancer cells to the inhibitors of phosphatidylinositol 3-kinase/Akt- and MAPK kinase 4/c-Jun NH2-terminal kinase pathways: an effective therapeutic strategy for lung cancer. Clin Cancer Res. 2005;11:6065–74.

    Article  CAS  PubMed  Google Scholar 

  39. Howard EW, Lee DT, Chiu YT, Chua CW, Wang X, Wong YC. Evidence of a novel Docetaxel sensitizer, garlic-derived S-allylmercaptocysteine, as a treatment option for hormone refractory prostate cancer. Int J Cancer. 2008;122:1941–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hecht SS, Kenney PMJ, Wang M, Trushin N, Upadhyaya P. Effects of Phenethyl isothiocyanate and benzyl isothiocyanate, individually and in combination, on lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Lett. 2000;150:49–56.

    Article  CAS  PubMed  Google Scholar 

  41. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–20.

    Article  CAS  PubMed  Google Scholar 

  42. Ji Y, Morris ME. Determination of phenethyl isothiocyanate in human plasma and urine by ammonia derivatization and liquid chromatography-tandem mass spectrometry. Anal Biochem. 2003;323:39–47.

    Article  CAS  PubMed  Google Scholar 

  43. Liebes L, Conaway CC, Hochster H, et al. High-performance liquid chromatography-based determination of total isothiocyanate levels in human plasma: application to studies with 2-phenethyl isothiocyanate. Anal Biochem. 2001;291:279–89.

    Article  CAS  PubMed  Google Scholar 

  44. Ji Y, Kuo Y, Morris ME. Pharmacokinetics of dietary phenethyl isothiocyanate in rats. Pharm Res. 2005;22:1658–66.

    Article  CAS  PubMed  Google Scholar 

  45. Aggarwal BB, Kunnumakkara AB, Harikumar KB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann NY Acad Sci. 2009;1171:59–76.

    Article  CAS  PubMed  Google Scholar 

  46. Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate. 2000;42:186–95.

    Article  CAS  PubMed  Google Scholar 

  47. van Duijn PW, Trapman J. PI3K/Akt signaling regulates p27kip1 expression via Skp2 in PC3 and DU145 prostate cancer cells, but is not a major factor in p27kip1 regulation in LNCaP and PC346 cells. Prostate. 2006;66:749–60.

    Article  PubMed  Google Scholar 

  48. Bergstralh DT, Ting JP. Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev. 2006;32:166–79.

    Article  CAS  PubMed  Google Scholar 

  49. Patterson SG, Wei S, Chen X, et al. Novel role of Stat1 in the development of Docetaxel resistance in prostate tumor cells. Oncogene. 2006;25:6113–22.

    Article  CAS  PubMed  Google Scholar 

  50. Zemskova M, Sahakian E, Bashkirova S, Lilly M. The PIM1 kinase is a critical component of a survival pathway activated by Docetaxel and promotes survival of Docetaxel-treated prostate cancer cells. J Biol Chem. 2008;283:20635–44.

    Article  CAS  PubMed  Google Scholar 

  51. Eckelman BP, Salvessen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7:988–94.

    Article  CAS  PubMed  Google Scholar 

  52. Dean EJ, Ranson M, Blackhall F, Dive C. X-linked inhibitor of apoptosis protein as a therapeutic target. Expert Opin Ther Targets. 2007;11:1459–71.

    Article  CAS  PubMed  Google Scholar 

  53. Amantana A, London CA, Iversen PL, Devi GR. X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther. 2004;3:699–707.

    CAS  PubMed  Google Scholar 

  54. Krajewska M, Krajewski S, Banares S, et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res. 2003;9:4914–25.

    CAS  PubMed  Google Scholar 

  55. Watanabe SI, Miyata Y, Kanda S, et al. Expression of X-linked inhibitor of apoptosis protein in human prostate cancer specimens with and without neo-adjuvant hormonal therapy. J Cancer Res Clin Oncol. In press, 2010.

  56. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 1998;188:211–6.

    Article  CAS  PubMed  Google Scholar 

  57. Domingo-Domenech J, Oliva C, Rovira A, et al. Interleukin 6, a nuclear factor-kB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kB inhibition by PS-1145 enhances docetaxel antitumor activity. Cancer Res. 2006;12:5578–86.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This investigation was supported by the USPHS grant CA101753 awarded by the National Cancer Institute (to S.V.S). The authors thank Julie A. Arlotti and Yan Zeng for technical assistance, and Dr. Bert Vogelstein (Johns Hopkins University, Baltimore, MD) for the generous gift of HCT-116 cells and its XIAP-/- variant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra Vikram Singh.

Additional information

Grant support

This investigation was supported by the USPHS grant CA101753 (to S.V.S.), awarded by the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, D., Singh, S.V. Phenethyl Isothiocyanate Sensitizes Androgen-Independent Human Prostate Cancer Cells to Docetaxel-Induced Apoptosis In Vitro and In Vivo . Pharm Res 27, 722–731 (2010). https://doi.org/10.1007/s11095-010-0079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0079-9

Key words

Navigation