Skip to main content
Log in

Dendrimeric Alkylated Polyethylenimine Nano-carriers with Acid-Cleavable Outer Cationic Shells Mediate Improved Transfection Efficiency Without Increasing Toxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Improved polycation-based non-viral DNA vectors were sought by preparing dendrimers with polyethylenimine cores surrounded by various shells incorporating structural features intended to facilitate steps in transfection mechanisms. Dendrimeric vectors were designed with (a) an outer oligocation shell, intended to facilitate DNA release inside cells, (b) a hydrophobic C-16 alkyl shell, and (c) a polycationic core, the latter two intended to combine lipid-depletion and osmotic burst endosome escape mechanisms, respectively, and were (d) attached through an a acid-cleavable linker reported to hydrolyze at endosomal pH values.

Methods

Vectors and DNA complexes were characterized by dynamic and static light scattering. Flow cytometry was used to quantitate transfection activity and cytotoxicity in CHO–K1 cells.

Results

About 5-fold increased transfection activity was obtained for a vector constructed with an outer shell of oligocations attached through acid-cleavable linkers, relative to a control dendrimer with an acid-stable linker. The most effective oligocation component of outer shells tested was spermine. Neither modification was associated with increased cytotoxicity. This vector design did not permit an evaluation of the benefit of combining endosome release mechanisms.

Conclusion

Using acid-cleavable linkers to attach an outer shell of short, highly-charged oligocations to a PEI-based dendrimeric vector substantially increased transfection efficiency without increasing cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  CAS  PubMed  Google Scholar 

  2. Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401:517–8.

    Article  CAS  PubMed  Google Scholar 

  3. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med. 2004;6 Suppl 1:S164–71.

    Article  CAS  PubMed  Google Scholar 

  4. Check E. Regulators split on gene therapy as patient shows signs of cancer. Nature. 2002;419:545–6.

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, et al. Murine leukemia induced by retroviral gene marking. Science. 2002;296:497.

    Article  CAS  PubMed  Google Scholar 

  6. Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev. 2002;54:715–58.

    Article  CAS  PubMed  Google Scholar 

  7. Izsvak Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol. 2000;302:93–102.

    Article  CAS  PubMed  Google Scholar 

  8. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89:113–25.

    Article  CAS  PubMed  Google Scholar 

  9. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995;92:7297–301.

    Article  CAS  PubMed  Google Scholar 

  10. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med. 2005;7:992–1009.

    Article  CAS  PubMed  Google Scholar 

  11. Gabrielson NP, Pack DW. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules. 2006;7:2427–35.

    Article  CAS  PubMed  Google Scholar 

  12. Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta KC, Chandra R. Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Int J Pharm. 2007;337:265–74.

    Article  CAS  PubMed  Google Scholar 

  13. Forrest ML, Meister GE, Koerber JT, Pack DW. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm Res. 2004;21:365–71.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas M, Klibanov AM. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A. 2002;99:14640–5.

    Article  CAS  PubMed  Google Scholar 

  15. Hall HK. Correlation of the base strengths of amines. J Amer Chem Soc. 1957;79:5441–4.

    Article  CAS  Google Scholar 

  16. Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem. 2001;12:989–94.

    Article  CAS  PubMed  Google Scholar 

  17. Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release. 2008;130:57–63.

    Article  CAS  PubMed  Google Scholar 

  18. Kloeckner J, Bruzzano S, Ogris M, Wagner E. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: effect of chemical structure of polymer on biological properties. Bioconjug Chem. 2006;17:1339–45.

    Article  CAS  PubMed  Google Scholar 

  19. Zhong Z, Feijen J, Lok MC, Hennink WE, Christensen LV, Yockman JW, et al. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Biomacromolecules. 2005;6:3440–8.

    Article  CAS  PubMed  Google Scholar 

  20. Knorr V, Ogris M, Wagner E. An acid sensitive ketal-based polyethylene glycol-oligoethylenimine copolymer mediates improved transfection efficiency at reduced toxicity. Pharm Res. 2008;25:2937–45.

    Article  CAS  PubMed  Google Scholar 

  21. Shim MS, Kwon YJ. Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery. Bioconjug Chem. 2009;20:488–99.

    Article  CAS  Google Scholar 

  22. Kim S, Choi HS, Jang HS, Suh H, Park J. Hydrophobic modification of polyethylenimine for gene transfectants. Bull Korean Chem Soc. 2001;22:1069–75.

    CAS  Google Scholar 

  23. Brownlie A, Uchegbu IF, Schatzlein AG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int J Pharm. 2004;274:41–52.

    Article  CAS  PubMed  Google Scholar 

  24. Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R, et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem. 2003;14:222–31.

    Article  CAS  PubMed  Google Scholar 

  25. Kircheis R, Schuller S, Brunner S, Ogris M, Heider KH, Zauner W, et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med. 1999;1:111–20.

    Article  CAS  PubMed  Google Scholar 

  26. Tseng WC, Jong CM. Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules. 2003;4:1277–84.

    Article  CAS  PubMed  Google Scholar 

  27. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 2001;8:28–40.

    Article  CAS  PubMed  Google Scholar 

  28. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release. 2003;91:173–81.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release. 2004;100:165–80.

    Article  CAS  PubMed  Google Scholar 

  30. Behr J. The proton sponge: a trick to enter cells viruses did not exploit. Chimia. 1997;51:34–6.

    CAS  Google Scholar 

  31. Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A. 1999;96:5177–81.

    Article  CAS  PubMed  Google Scholar 

  32. Remy-Kristensen A, Clamme JP, Vuilleumier C, Kuhry JG, Mely Y. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim Biophys Acta. 2001;1514:21–32.

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasachar K, Neville DM. New protein cross-linking reagents that are cleaved by mild acid. Biochemistry. 1989;28:2501–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ambekar S, Gowda DC. Synthesis of heterobifunctional crosslinking reagents: w-(N-maleimido)alkanoic acid hydrazides. Indian J Chem. 1996;35B:184–6.

    CAS  Google Scholar 

  35. Garger SJ, Griffith OM, Grill LK. Rapid purification of plasmid DNA by a single centrifugation in a two-step cesium chloride-ethidium bromide gradient. Biochem Biophys Res Commun. 1983;117:835–42.

    Article  CAS  PubMed  Google Scholar 

  36. Imai K, Toyo’oka T, Watanabe Y. A novel fluorogenic reagent for thiols: ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulfonate. Anal Biochem. 1983;128:471–3.

    Article  CAS  PubMed  Google Scholar 

  37. Ungaro F, De Rosa G, Miro A, Quaglia F. Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J Pharm Biomed Anal. 2003;31:143–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wagner HL, Hoeve CAJ. Effect of molecular weight on the refractive increment of polyethylene and n-alkanes. J Polymer Sci A-2. 1971;9:1763–76.

    Article  CAS  Google Scholar 

  39. Merdan T. Polyethylenimine and its derivatives: investigation of in vivo fate, subcellular trafficking and development of novel vector systems. Marburg: Philips-Universität Marburg; 2003.

    Google Scholar 

  40. Johnson TW, Klotz IM. Preparation and characterization of some derivatives of poly(ethylenimine). Macromolecules. 1974;7:149–53.

    Article  CAS  Google Scholar 

  41. Noeding G, Heitz W. Amphiphilic poly(ethyleneimine) based on long-chain alkyl bromides. Macro Chem Phys. 1998;199:1637–44.

    Article  CAS  Google Scholar 

  42. Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18:1082–6.

    Article  CAS  PubMed  Google Scholar 

  43. Steele TWJ. Oligo-l-lysine-, dextran-, and alkyl-derivatives of polyethylenimine for the development of novel gene transfection vectors. Minneapolis: University of Minnesota; 2006.

    Google Scholar 

  44. Udenfriend S, Stein S, Bohlen P, Dairman W, Leimgruber W, Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972;178:871–2.

    Article  CAS  PubMed  Google Scholar 

  45. Weigele M, DeBernardo S, Leimgruber W. Fluorometric assay of secondary amino acids. Biochem Biophys Res Commun. 1973;50:352–6.

    Article  CAS  PubMed  Google Scholar 

  46. Suh J, Paik HJ, Hwang BK. Ionization of polyethylenimine and polyallylamine at various pH’s. Bioorgan Chem. 1994;22:318–27.

    Article  CAS  Google Scholar 

  47. Dehshahri A, Oskuee RK, Shier WT, Hatefi A, Ramezani M. Hydrophobized PEI coupled to various oligoamines results in efficient nanocarriers for plasmid DNA transfer. Biomaterials. 2009;30:4187–94.

    Article  CAS  PubMed  Google Scholar 

  48. Oskuee RK, Dehshahri A, Shier WT, Ramezani M. Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nano-carrier with low toxicity. J Gene Med. 2009;11:921–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Robert Vince and University of Minnesota Department of Medicinal Chemistry Developmental Grant in Drug Design #882-1010 for support of this research, and Dr. Mohammad Ramezani for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Thomas Shier.

Additional information

Adapted from the PhD thesis of T.W.J. Steele, University of Minnesota, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, T.W.J., Shier, W.T. Dendrimeric Alkylated Polyethylenimine Nano-carriers with Acid-Cleavable Outer Cationic Shells Mediate Improved Transfection Efficiency Without Increasing Toxicity. Pharm Res 27, 683–698 (2010). https://doi.org/10.1007/s11095-010-0058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0058-1

KEY WORDS

Navigation