Skip to main content
Log in

Evaluation of Drug-Polymer Miscibility in Amorphous Solid Dispersion Systems

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate drug-polymer miscibility behavior in four different drug-polymer amorphous solid dispersion systems, namely felodipine-poly(vinyl pyrrolidone) (PVP), nifedipine-PVP, ketoconazole-PVP, and felodipine-poly(acrylic acid) (PAA).

Materials and Methods

Amorphous solid dispersion samples were prepared at different drug-to-polymer ratios and analyzed using differential scanning calorimetry (DSC), mid-infrared (IR) spectroscopy, and powder X-ray diffractometry (PXRD). To help with interpretation of the IR spectra, principal components (PC) analysis was performed. Pair Distribution Functions (PDFs) of the components in the dispersion were determined from the PXRD data, and the pure curves of the components were also extracted from PXRD data using the Pure Curve Resolution Method (PCRM) and compared against experimentally obtained results.

Results

Molecular-level mixing over the complete range of concentration was verified for nifedipine-PVP and felodipine-PVP. For felodipine-PAA, drug-polymer immiscibility was verified for samples containing 30 to 70% polymer, while IR results suggest at least some level of mixing for samples containing 10 and 90% polymer. For ketoconazole-PVP system, partial miscibility is suspected, whereby the presence of one-phase amorphous solid dispersion system could only be unambiguously verified at higher concentrations of polymer.

Conclusions

The three techniques mentioned complement each other in establishing drug-polymer miscibility in amorphous solid dispersion systems. In particular, IR spectroscopy and PXRD are sensitive to changes in local chemical environments and local structure, which makes them especially useful in elucidating the nature of miscibility in binary mixtures when DSC results are inconclusive or variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hancock BC, Zografi G. Characteristics and Significance of the Amorphous State in Pharmaceutical Systems [Review]. J. Pharm. Sci. 1997;86:1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17:397–404.

    Article  CAS  PubMed  Google Scholar 

  3. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  PubMed  Google Scholar 

  4. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999;88:1058–66.

    Article  CAS  PubMed  Google Scholar 

  5. Crowley KJ, Zografi G. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharm Res. 2003;20:1417–22.

    Article  CAS  PubMed  Google Scholar 

  6. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 2001;12:261–9.

    Article  PubMed  Google Scholar 

  7. Yoshioka M, Hancock BC, Zografi G. Inhibition Of Indomethacin Crystallization In Poly(Vinylpyrrolidone) Coprecipitates. J. Pharm. Sci. 1995;84:983–6.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshihashi Y, Iijima H, Yonemochi E, Terada K. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal. Calorim. 2006;85:689–92.

    Article  CAS  Google Scholar 

  9. Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res. 2006;23:2306–16.

    Article  CAS  PubMed  Google Scholar 

  10. Marsac PJ, Konno H, Rumondor ACF, Taylor LS. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Pharm Res. 2008;25:647–56.

    Article  CAS  PubMed  Google Scholar 

  11. Miyazaki T, Yoshioka S, Aso Y, Kojima S. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci. 2004;93:2710–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci. 2008;97:1329–49.

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm Res. 1999;16:1722–8.

    Article  CAS  PubMed  Google Scholar 

  14. Shamblin SL, Zografi G. The effects of absorbed water on the properties of amorphous mixtures containing sucrose. Pharm Res. 1999;16:1119–24.

    Article  CAS  PubMed  Google Scholar 

  15. Olabisi O, Robeson L, Shaw M. Polymer-polymer Miscibility. San Diego: Academic Press, Inc.; 1979.

    Google Scholar 

  16. Shamblin SL, Taylor LS, Zografi G. Mixing Behavior of Colyophilized Binary Systems. J. Pharm. Sci. 1998;87:694–701.

    Article  CAS  PubMed  Google Scholar 

  17. Pomposo JA, Calahorra E, Eguiazabal I, Cortazar M. Miscibility Behavior of Ternary Poly(Methyl Methacrylate) Poly(Ethyl Methacrylate) Poly(P-Vinylphenol) Blends. Macromolecules. 1993;26:2104–10.

    Article  CAS  Google Scholar 

  18. Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15:1202–6.

    Article  CAS  PubMed  Google Scholar 

  19. Bates S, Zografi G, Engers D, Morris K, Crowley K, Newman A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res. 2006;23:2333–49.

    Article  CAS  PubMed  Google Scholar 

  20. Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of Amorphous API:Polymer Mixtures Using X-Ray Powder Diffraction. J. Pharm. Sci. 2008;97:4840–56.

    Article  CAS  PubMed  Google Scholar 

  21. Brent RP. Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice Hall; 1973.

    Google Scholar 

  22. I. Ivanisevic, S. Bates, and P. Chen. Novel methods for the assessment of miscibility of amorphous drug-polymer dispersions. J. Pharm. Sci. 2009;98:3373–83.

    Article  CAS  PubMed  Google Scholar 

  23. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J. Pharm. Sci. 2006;95:2692–705.

    Article  CAS  PubMed  Google Scholar 

  24. Marsac PJ. Molecular Level Understanding of Polymer Induced Formation and Stabilization of Amorphous API, Industrial and Physical Pharmacy. Ph. D. Dissertation: Purdue University, West Lafayette; 2007.

    Google Scholar 

  25. Couchman PR, Karasz FE. Classical thermodynamic discussion of effect of composition on glass-transition temperatures. Macromolecules. 1978;11:117–9.

    Article  CAS  Google Scholar 

  26. Rumondor ACF. The Effects of Moisture on Pharmaceutical Amorphous Solid Dispersion Systems, Industrial and Physical Pharmacy. Ph. D. Dissertation: Purdue University, West Lafayette; 2009.

    Google Scholar 

  27. A. C. F. Rumondor, P. Marsac, L. A. Stanford, and L. S. Taylor. Phase Behavior of Poly(vinylpyrrolidone) Containing Amorphous Solid Dispersions in the Presence of Moisture. Mol. Pharm. 2009. doi:10.1021/mp900050c.

  28. Rantanen J, Wikstrom H, Turner R, Taylor LS. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Anal Chem. 2005;77:556–63.

    Article  CAS  PubMed  Google Scholar 

  29. Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 2000;89:1325–34.

    Article  CAS  PubMed  Google Scholar 

  30. Yalkowsky SH. Solubility and Solubilization in Aqueous Media. New York: Oxford University Press; 1999.

    Google Scholar 

  31. Marcolli C, Luo BP, Peter T. Mixing of the organic aerosol fractions: Liquids as the thermodynamically stable phases. J. Phys. Chem. A. 2004;108:2216–24.

    Article  CAS  Google Scholar 

  32. Marsac PJ, Li T, Taylor LS. Estimation of Drug-Polymer Miscibility and Solubility in Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters. Pharm Res. 2009;26:139–51.

    Article  CAS  PubMed  Google Scholar 

  33. Dong J, Ozaki Y, Nakashima K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules. 1997;30:1111–7.

    Article  CAS  Google Scholar 

  34. Rubinstein M. and Colby. R. H. Polymer Physics: Oxford University Press, New York; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumondor, A.C.F., Ivanisevic, I., Bates, S. et al. Evaluation of Drug-Polymer Miscibility in Amorphous Solid Dispersion Systems. Pharm Res 26, 2523–2534 (2009). https://doi.org/10.1007/s11095-009-9970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9970-7

Key Words

Navigation