Skip to main content

Advertisement

Log in

Utility of Nanosized Microemulsion for Transdermal Delivery of Tolterodine Tartrate: Ex-Vivo Permeation and In-Vivo Pharmacokinetic Studies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to investigate the feasibility of using nanosized microemulsion for transdermal delivery of tolterodine tartrate.

Methods

The effect of three microemulsions formed by Labrasol: Plurol (3:1), isopropyl myristate and water on the permeation of tolterodine through miniature pig skin was studied in vitro using Franz diffusion cell. For comparison purpose, the effect of different vehicles on the permeation was also studied. Drug pharmacokinetics was studied after transdermal application to human volunteers compared to the commercial oral dosage form using a newly developed LC-MS/MS assay.

Results

The vehicle PEG 400:Phosphate buffer pH 7.4 in the ratio of 1:1 significantly enhanced tolterodine permeation across pig skin. The microemulsion system (ME3) containing the highest amount of water (50%) significantly enhanced permeation with Q24 of 0.746 mg.cm−2. In contrast to oral delivery, a sustained activity was observed over a period of 72 h after transdermal application of this microemulsion to human volunteers with significant lower Cmax (1.06 ng/ml), delayed Tmax (3.17 h) and higher MRT value (147.82 h) (p < 0.05).

Conclusion

This sustained activity was due to the controlled release of drug into the systemic circulation with expected increase in the patient compliance and prevention of nocturnal enuresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology in lower urinary tract function: Report from the standardisation subcommittee of the International Continence Society. Urology. 2003;61:37–49.

    Article  PubMed  Google Scholar 

  2. Stewart WF, Van Rooyen JB, Cundiff GW. Prevalence and burden of overactive bladder in the United States. World J Urol. 2003;20:327–36.

    CAS  PubMed  Google Scholar 

  3. Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic hyperplasia with age. J Urol. 1984;132:474–9.

    CAS  PubMed  Google Scholar 

  4. Irwin DE, Milsom I, Kopp Z. Impact of overactive bladder symptoms on employment, social interactions and emotional wellbeing in six European countries. BJU Int. 2006;97:96–100.

    Article  PubMed  Google Scholar 

  5. Kaplan SA, Roehrborn CG, Dmochowski R. Tolterodine extended release improves overactive bladder symptoms in men with overactive bladder and nocturia. Urology. 2006;68:328–32.

    Article  PubMed  Google Scholar 

  6. Yu YF, Nichol MB, Yu AP, Ahn J. Persistence and adherence of medications for chronic overactive bladder/urinary incontinence in the California Medicaid Program. Value Health. 2005;8:495–505.

    Article  PubMed  Google Scholar 

  7. Malone-Lee J, Shaffu B, Anand C, Powell C. Tolterodine superior tolerability and comparable efficacy to oxybutynin in individuals 50 years old or older with overactive bladder: a randomized controlled trial. J Urol. 2001;165:1452–6.

    Article  CAS  PubMed  Google Scholar 

  8. Serels SR, Appell RA. Tolterodine: a new antimuscarinic agent for the treatment of the overactive bladder. Expert Opin Investig Drugs. 1999;8(7):1073–8.

    Article  CAS  PubMed  Google Scholar 

  9. Brynne N, Stahl MM, Hallen B, Edlund PO, Palmer L, Hoglund P, et al. Pharmacokinetics and pharmacodynamics of tolterodine in man: a new drug for the treatment of urinary bladder overactivity. Int J Clin Pharmacol Ther. 1997;35(7):287–95.

    CAS  PubMed  Google Scholar 

  10. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm. 2007;332:1–16.

    Article  CAS  PubMed  Google Scholar 

  11. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006;123–126:369–385.

    Article  PubMed  Google Scholar 

  12. Kreilgaard M, Kemme MJ, Burggraaf J, Schoemaker RC, Cohen AF. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm Res. 2001;18(5):593–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm. 2006;311(1–2):55–62.

    Article  CAS  PubMed  Google Scholar 

  14. Spiclin P, Homar M, Zupancic-Valant A, Gasperlin M. Sodium ascorbyl phosphate in topical microemulsions. Int J Pharm. 2003;256(1–2):65–73.

    Article  CAS  PubMed  Google Scholar 

  15. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, et al. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet. 1991;16(4):249–55.

    CAS  Google Scholar 

  16. Alvarez-Figueroa MJ, Blanco-Mendez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm. 2001;215(1–2):57–65.

    Article  CAS  PubMed  Google Scholar 

  17. Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

    Article  CAS  PubMed  Google Scholar 

  18. ''Declaration of Helsinki.'' As amended by the 52nd World Medical Assembly (WMA). World Medical Association, Edinburgh, Scotland, October 2000.

  19. International conference of harmonization of technical requirements for registration of pharmaceuticals for human use. ICH harmonized tripartite guideline. Guidelines for good clinical practice. May 1996.

  20. Ongpipattanakul B, Burnette RR, Potts RO, Francoeur ML. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm. Res. 1991;8:350–354.

    Article  CAS  PubMed  Google Scholar 

  21. Hadgraft J. Passive enhancement strategies in topical and transdermal drug delivery Int. J. of Pharm. 1999;184:1–6.

    CAS  Google Scholar 

  22. Mayorga P, Puisieux F, Couarraze G. Formulation study of a transdermal delivery system of primaquine. Int. J. Pharm. 1996;132:71–79.

    Article  CAS  Google Scholar 

  23. Zheng XS, Duan CZ, Xiao ZD, Yao BA. Transdermal delivery of praziquantel: effects of solvents on permeation across rabbit skin. Biol Pharm Bull. 2008;31(5):1045–8.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discov. Today. 2004;9(16):697–703.

    Article  CAS  Google Scholar 

  25. Fini A, Bergamante V, Ceschel GC, Ronchi C, De Moraes CA. Control of transdermal permeation of hydrocortisone acetate from hydrophilic and lipophilic formulations. AAPS PharmSciTech. 2008;9(3):762–8.

    Article  PubMed  Google Scholar 

  26. Menon G.K. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev. 54 (1): S3–17(2002).

    Google Scholar 

  27. Klamerus K, Lee G. Effects of some hydrophilic permeation enhancers on the absorption of bepridil through excised human skin. Drug Dev. and Ind. Pharmacy. 1992;18(13):1411–1422.

    Article  CAS  Google Scholar 

  28. M. Kreilgaard, E.J. Pedersen, J.W. Jaroszewski. NMR. characterisation and transdermal drug delivery potential of microemulsion systems. J. Control Rel. 69:421–433 (2000).

    Google Scholar 

  29. H. E. J. Hofland, J. A. Bouwstra, F. Spies, G. Gooris, H. E. Junginger. Interaction between liposomes and human skin in vitro: Poster presentation. Conference: Liposomes in Drug Delivery 21 years On, London, 12–15 (1990).

  30. N. Weiner, K. Egbaria. Topical application of liposomal systems: Poster presentation. Conference: Liposomes in Drug Delivery 21 years On, London, 12–15 (1990).

  31. Kweon JH, Chi SC, Park Transdermal ES. delivery of diclofenac using microemulsions. Arch Pharm Res. 2004;27(3):351–6.

    Article  CAS  PubMed  Google Scholar 

  32. Delgado-Charro MB, Iglesias-Vilas G, Blanco-Mendez J, Lopez-Quintela MA, Marty JP, Guy RH. Delivery of a hydrophilic solute through the skin from novel microemulsion systems. Eur. J. Pharm. Biopharm. 1997;43:37–42.

    Article  Google Scholar 

  33. Olsson B, Szamosi J. Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet. 2001;40(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  34. Guay D.R.P. Clinical Pharmacokinetics of Drugs Used to Treat Urge Incontinence Clin Pharmacokinet. 42(14): 1243–1285 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Elshafeey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elshafeey, A.H., Kamel, A.O. & Fathallah, M.M. Utility of Nanosized Microemulsion for Transdermal Delivery of Tolterodine Tartrate: Ex-Vivo Permeation and In-Vivo Pharmacokinetic Studies. Pharm Res 26, 2446–2453 (2009). https://doi.org/10.1007/s11095-009-9956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9956-5

KEY WORDS

Navigation