Skip to main content

Advertisement

Log in

Characterization of a Microsphere Formulation Containing Glucose Oxidase and its In Vivo Efficacy in a Murine Solid Tumor Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work focused on the characterization and in vitro/in vivo evaluation of an alginate/chitosan microsphere (ACMS) formulation of glucose oxidase (GOX) for the locoregional delivery of reactive oxygen species for the treatment of solid tumors.

Methods

The GOX distribution and ACMS composition were determined by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The mechanism of GOX loading and GOX-polymer interactions were examined with Fourier transform infrared spectroscopy and differential scanning calorimetry. In vitro cytotoxicity and in vivo efficacy of GOX-encapsulated ACMS (ACMS-GOX) were evaluated in EMT6 breast cancer cells and solid tumors.

Results

GOX was loaded into calcium alginate (CaAlg) gel beads via electrostatic interaction and the CaAlg-GOX-chitosan complexation likely stabilized GOX. Higher concentrations of GOX near the surface of ACMS were detected. GOX retained its integrity upon adsorption to CaAlg gel beads during the coating and after release from ACMS. ACMS-GOX exhibited cytotoxicity to the breast cancer cells in vitro and their efficacy increased with increasing incubation time. Intratumorally delivered ACMS-GOX significantly delayed tumor growth with much lower general toxicity than free GOX.

Conclusion

The results suggest that the ACMS-GOX formulation has the potential for the intratumoral delivery of therapeutic proteins to treat solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACMS:

Alginate/chitosan microspheres

ACMS-GOX:

GOX encapsulated in alginate/chitosan microspheres

CaAlg:

Calcium alginate

CLSM:

Confocal laser scanning microscope

DD:

Degree of deacetylation

DDI:

Distilled and deionized

DSC:

Differential scanning calorimetry

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

FR-GOX:

Free glucose oxidase

FT-IR:

Fourier transform infrared

GOX:

Glucose oxidase

i.t.:

Intratumoral

MDR:

Multidrug resistance

NaAlg:

Sodium alginate

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TGD:

Tumor growth delay

TPLD:

Tumor plus leg diameter

XPS:

X-ray photoelectron spectroscopy

α-MEM:

Alpha-minimal essential medium

η:

Intrinsic viscosity

ηsp :

Specific viscosity

REFERENCES

  1. Kondo N, Nakamura H, Masutani H, Yodoi J. Redox regulation of human thioredoxin network. Antioxid Redox Signal. 2006;8:1881–90.

    Article  PubMed  CAS  Google Scholar 

  2. Nicotera TM, Privalle C, Wang TC, Oshimura M, Barrett JC. Differential proliferative responses of Syrian hamster embryo fibroblasts to paraquat-generated superoxide radicals depending on tumor suppressor gene function. Cancer Res. 1994;54:3884–8.

    PubMed  CAS  Google Scholar 

  3. Giles GI. The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des. 2006;12:4427–43.

    Article  PubMed  CAS  Google Scholar 

  4. Hampton MB, Fadeel B, Orrenius S. Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci. 1998;854:328–35.

    Article  PubMed  CAS  Google Scholar 

  5. Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel. 2009;12:240–5.

    PubMed  CAS  Google Scholar 

  6. Ravi D, Das KC. Redox-cycling of anthracyclines by thioredoxin system: increased superoxide generation and DNA damage. Cancer Chemother Pharmacol. 2004;54:449–58.

    Article  PubMed  CAS  Google Scholar 

  7. Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem. 2000;275:33585–92.

    Article  PubMed  CAS  Google Scholar 

  8. Minami T, Adachi M, Kawamura R, Zhang Y, Shinomura Y, Imai K. Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Clin Cancer Res. 2005;11:5248–56.

    Article  PubMed  CAS  Google Scholar 

  9. Hagen T, D’Amico G, Quintero M, Palacios-Callender M, Hollis V, Lam F, et al. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol. Biochem Biophys Res Commun. 2004;322:923–9.

    Article  PubMed  CAS  Google Scholar 

  10. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7:97–110.

    Article  PubMed  CAS  Google Scholar 

  11. Higuchi Y, Shoin S, Matsukawa S. Enhancement of the antitumor effect of glucose oxidase by combined administration of hydrogen peroxide decomposition inhibitors together with an oxygenated fluorocarbon. Jpn J Cancer Res. 1991;82:942–9.

    PubMed  CAS  Google Scholar 

  12. Ben-Yoseph Q, Ross BD. Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer. 1994;70:1131–5.

    PubMed  CAS  Google Scholar 

  13. Liu Q. Enzyme microencapsulation and its application for overcoming multidrug resistance in breast cancer treatment, Ph.D. Dissertation, University of Toronto, Canada 2008.

  14. Liu Q, Shuhendler A, Cheng J, Rauth AM, O’Brien PJ, Wu XY. Cytotoxicity and mechanism of action of a new ROS-generating microsphere formulation for circumventing multidrug resistance in breast cancer cells. Breast Cancer Res Treat. 2009; doi:10.1007/s10549-009-0473-3.

  15. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    PubMed  CAS  Google Scholar 

  16. Jain RK. Barriers to drug delivery in solid tumors. Sci Am. 1994;271:58–65.

    Article  PubMed  CAS  Google Scholar 

  17. Jain RK. Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res. 1999;5:1605–6.

    PubMed  CAS  Google Scholar 

  18. Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol. 2003;519:29–49.

    Article  PubMed  CAS  Google Scholar 

  19. Jain RK. Normalization of tumor vasculature: an emerging concept in anitiangiogenic therapy. Science. 2005;307:58–62.

    Article  PubMed  CAS  Google Scholar 

  20. Idani H, Matsuoka J, Yasuda T, Kobayashi K, Tanaka N. Intra-tumoral injection of doxorubicin (Adrimaycin) encapsulated in liposome inhibits tumor growth, prolongs survival time and is not associated with local or systemic side effects. Int J Cancer. 2000;88:645–51.

    Article  PubMed  CAS  Google Scholar 

  21. Voulgaris S, Partheni M, Karamouzis M, Dimopoulos P, Papadakis N, Kalofonos HP. Intratumoral doxorubicin in patients with malignant brain gliomas. Am J Clin Oncol. 2002;25:60–4.

    Article  PubMed  Google Scholar 

  22. Liu Z, Ballinger JR, Rauth AM, Bendayan R, Wu XY. Delivery of an anticancer drug and a chemosensitizer to murine breast sarcoma by intratumoral injection of sulfopropyl dextran microspheres. J Pharm Pharmacol. 2003;55:1063–73.

    Article  PubMed  CAS  Google Scholar 

  23. Cheung RY, Rauth AM, Wu XY. In vivo efficacy and toxicity of intratumorally delivered mitomycin C and its combination with doxorubicin using microsphere formulations. Anti-Cancer Drugs. 2005;16:423–33.

    Article  PubMed  CAS  Google Scholar 

  24. Wong HL, Rauth AM, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm. 2007;65:300–8.

    Article  PubMed  CAS  Google Scholar 

  25. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres. Biomaterials. 2007;28:3236–44.

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. Trans-lymphatic delivery of paclitaxel by intrapleural placement of gelatin sponge impregnated with PLGA-paclitaxel microspheres effectively controls lymphatic metastasis in an orthotopic lung cancer model. Cancer Res. 2009;69:1174–81.

    Article  PubMed  CAS  Google Scholar 

  27. Cheung R, Ying Y, Rauth AM, Marcon N, Wu XY. Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials. 2005;26:5375–85.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Q, Rauth AM, Wu XY. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification–internal gelation–adsorption–polyelectrolyte coating method. Int J Pharm. 2007;339:148–56.

    Article  PubMed  CAS  Google Scholar 

  29. Fu K, Klibanov AM, Langer R. Protein stability in controlled-release systems. Nat Biotechnol. 2000;18:24–5.

    Article  PubMed  CAS  Google Scholar 

  30. Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs. 2001;25:558–65.

    Article  PubMed  CAS  Google Scholar 

  31. Peters MC, Isenberg BC, Rowley JA, Mooney DJ. Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed. 1998;9:1267–78.

    Article  PubMed  CAS  Google Scholar 

  32. Silva CM, Ribeiro AJ, Figueiredo IV, Goncalves AR, Veiga F. Alginate microspheres prepared by internal gelation: development and effect on insulin stability. Int J Pharm. 2006;311:1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Hearn E, Neufeld RJ. Poly(methylene co-guanidine) coated alginate as an encapsulation matrix for urease. Proc Biochem. 2000;35:1253–60.

    Article  CAS  Google Scholar 

  34. Shah Y, Shah D, Patel RB, Trivedi BM. Immobilization of urease in calcium alginate gels. Res Ind. 1995;40:23–7.

    CAS  Google Scholar 

  35. Betigeri SS, Neau SH. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials. 2002;23:3627–36.

    Article  PubMed  CAS  Google Scholar 

  36. Hsu SC, Don TM, Chiu WY. Free radical degradation of chitosan with potassium persufate. Polym Degrad Stability. 2002;75:73–83.

    Article  CAS  Google Scholar 

  37. Roberts GAF, Domszy JG. Determination of the viscometric constants for chitosan. Int J Biol Macromol. 1982;4:374–377.

    Article  CAS  Google Scholar 

  38. Roberts GAF. Analysis of chitin and chitosan. In: Roberts GAF, editor. Chitin chemistry. London: Macmillan; 1992. p. 95–6.

    Google Scholar 

  39. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  40. Wang L, Khor E, Lim LY. Chitosan-alginate-CaCl2 system for membrane coat application. J Pharm Sci. 2001;90:1134–42.

    Article  PubMed  CAS  Google Scholar 

  41. Cheung RY, Rauth AM, Ronald P, Bendayan B, Wu XY. Cytotoxicity of microsphere-delivered mitomycin C and its combinations with doxorubicin against breast cancer cells. Eur J Pharm Biopharm. 2006;62:321–31.

    Article  PubMed  CAS  Google Scholar 

  42. Tam SK, Dusseault J, Polizu S, Menard M, Halle J, Yahia L. Physicochemical model of alginate–poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials. 2006;26:2950–61.

    Google Scholar 

  43. Smitha B, Sridhar S, Khan AA. Chitosan-sodium alginate polyion complexes as fuel cell membranes. Eur Polym J. 2005;41:1859–66.

    Article  CAS  Google Scholar 

  44. Kennamer JE, Usmani AM. DSC analysis of select diagnostic enzymes. J Appl Polym Sci. 1991;42:3073–4.

    Article  CAS  Google Scholar 

  45. Sarti B, Scandola M. Viscoelastic and thermal properties of collagen/poly (vinyl alcohol) blends. Biomaterials. 1995;16:785–92.

    Article  PubMed  CAS  Google Scholar 

  46. Green RJ, Hopkinson I, Jones RAL. Unfolding and intermolecular association in globular proteins adsorbed at interfaces. Langmuir. 1999;15:5102–10.

    Article  CAS  Google Scholar 

  47. Fersht A. Enzyme Structure and Mechanism. San Francisco: Freeman; 1985.

    Google Scholar 

Download references

ACKNOWLEDGEMENT

This work was supported in part by the Canadian Institutes of Health Research. University of Toronto Open Fellowships and Ben Cohen Fund offered to Q. Liu are also acknowledged. The author would like to thank Dr. T. Chalikian for use of the lyophilizer, Dr. J. Uetrecht for use of the plate reader, Dr. R. Sodhi for XPS experiment and consultation, Mr. H. Huang for DSC analysis, and Mr. B. Calvieri for CLSM imaging analysis. The author would also like to thank Dr. R.Y. Cheung, Dr. H.L. Wong and Mr. A. Shuhendler for their generous help in cell culture work. The authors also thank Mr. Bob Kuba for assistance in animal work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Rauth, A.M., Liu, J. et al. Characterization of a Microsphere Formulation Containing Glucose Oxidase and its In Vivo Efficacy in a Murine Solid Tumor Model. Pharm Res 26, 2343–2357 (2009). https://doi.org/10.1007/s11095-009-9951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9951-x

KEY WORDS

Navigation