Skip to main content

Advertisement

Log in

Arsonoliposomes for the Potential Treatment of Medulloblastoma

  • Original Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the arsonoliposome effect on medulloblastoma cells (VC312Rs) related to uptake, endocytotic mechanism and cell viability.

Methods

VC312R viability in presence of either arsonoliposomes or stealth liposomes was studied using MTT assay for 1–4 days. Fibroblasts (3T3) were used as control. Apoptosis was studied for 2 h, 5 h and 24 h. Bodipy-labelled arsonoliposome uptake (time- and dose-dependent) was estimated using FACS analysis. The endocytotic mechanism was investigated using inhibitors of clathrin- (chlorpromazine) and caveolae-mediated endocytosis (filipin).

Results

Arsonoliposomes affected significantly the VC312R viability compared to 3T3 cells and induced apoptosis to VC312Rs after 2 h of incubation. Apoptosis was not observed for 3T3 cells. Liposome uptake versus time showed a bimodal pattern. Clathrin-mediated endocytosis was the main endocytotic mechanism at low lipid concentrations and caveolae at higher ones; thus, dose-dependent uptake did not show a plateau at increased lipid concentrations.

Conclusions

Arsonoliposomes showed “selective” toxicity towards medulloblastoma cells inducing apoptosis after 2 hs of incubation. Therefore, arsonoliposomes are promising anticancer vehicles for brain tumour treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABB:

annexin binding buffer

Bodipy:

boron-dipyrromethene

C16-As:

2,3-dipalmitoyloxypropylarsonic acid

Chol:

cholesterol

CPZ:

chlorpromazine hydrochloride

DAPI:

4′,6-diamidino-2-phenylindole

DHPE:

1,2-dihexadecanoyl-SN-glycero-3-phosphoethanolamine

DMSO:

dimethylsulfoxide

DSPC:

1,2-distearoyl-sn-glycero-3-phosphocholine

FACS:

fluorescence-activated cell sorting

FBS:

fetal bovine serum

MEM:

minimum essential medium

PBS:

phosphate buffer saline

PFA:

paraformaldehyde

PI:

propidium iodide

PS:

phosphatidyl serine

Rhod:

rhodamine

SUPW:

sterile ultra pure water

TNF-α:

tumoural necrosis factor

REFERENCES

  1. Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 2004;5:209–18.

    Article  PubMed  Google Scholar 

  2. Cervoni L, Maleci A, Salvati M, Delfini R, Cantore G. Medulloblastoma in late adults: report of two cases and critical review of the literature. J Neurooncol. 1994;19:169–73.

    Article  PubMed  CAS  Google Scholar 

  3. Raffel C. Medulloblastoma: molecular genetics and animal models. Neoplasia. 2004;6:310–22.

    Article  PubMed  Google Scholar 

  4. Castello MA, Clerico A, Deb G, Dominici C, Fidani P, Donfrancesco A. High-dose carboplatin in combination with etoposide (JET regimen) for childhood brain tumors. Am J Pediatr Hematol Oncol. 1990;12:297–300.

    Article  PubMed  CAS  Google Scholar 

  5. Schuler D, SomLo P, Kooos R, Kalmanchey R, Paraicz E. Treatment of malignant scala posterior brain tumors in children: the chemotherapy of relapsed medulloblastoma with a dibromdulcitol containing drug regime and pharmacokinetic studies of dibromdulcitol in children. Med Pediatr Oncol. 1992;20:312–4.

    Article  PubMed  CAS  Google Scholar 

  6. Borsi JD, Csaki C, Ferencz T, Oster W. Administration of Ethyol (amifostine) to a child with medulloblastoma to ameliorate hematological toxicity of high dose carboplatin. Anticancer Drugs. 1996;7:121–6.

    Article  PubMed  CAS  Google Scholar 

  7. Fatouros D, Gortzi O, Klepetsanis P, Antimisiaris SG, Stuart MC, Brisson A, et al. Preparation and properties of arsonolipid containing liposomes. Chem Phys Lipids. 2001;109:75–89.

    Article  PubMed  CAS  Google Scholar 

  8. Gortzi O, Papadimitriou E, Kontoyannis CG, Antimisiaris SG, Ioannou PV. Arsonoliposomes, a novel class of arsenic-containing liposomes: effect of palmitoyl-arsonolipid-containing liposomes on the viability of cancer and normal cells in culture. Pharm Res. 2002;19:79–86.

    Article  PubMed  CAS  Google Scholar 

  9. Gortzi O, Antimisiaris SG, Klepetsanis P, Papadimitriou E, Ioannou PV. Arsonoliposomes: effect of arsonolipid acyl chain length and vesicle composition on their toxicity towards cancer and normal cells in culture. Eur J Pharm Sci. 2003;18:175–83.

    Article  PubMed  CAS  Google Scholar 

  10. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

    Article  PubMed  CAS  Google Scholar 

  11. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  12. Meng W, Parker TL, Kallinteri P, Walker DA, Higgins S, Hutcheon GA, et al. Uptake and metabolism of novel biodegradable poly (glycerol-adipate) nanoparticles in DAOY monolayer. J Control Release. 2006;116:314–21.

    Article  PubMed  CAS  Google Scholar 

  13. Wang LH, Rothberg KG, Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993;123:1107–17.

    Article  PubMed  CAS  Google Scholar 

  14. Huth US, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release. 2006;110:490–504.

    Article  PubMed  CAS  Google Scholar 

  15. Gumbleton M, Abulrob AG, Campbell L. Caveolae: an alternative membrane transport compartment. Pharm Res. 2000;17:1035–48.

    Article  PubMed  CAS  Google Scholar 

  16. Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol. 2002;83:1535–45.

    PubMed  CAS  Google Scholar 

  17. Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999;93:268–77.

    PubMed  CAS  Google Scholar 

  18. Haikou MN, Zagana P, Ioannou PV, Antimisiaris SG. Arsonoliposome interaction with thiols: effect of pegylation and arsonolipid content of arsonoliposomes on their integrity during incubation in glutathione. J Nanosci Nanotechnol. 2006;6:2974–8.

    Article  PubMed  CAS  Google Scholar 

  19. Evens AM, Tallman MS, Gartenhaus RB. The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future. Leuk Res. 2004;28:891–900.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu J, Koken MH, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, et al. Arsenic-induced PmL targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1997;94:3978–83.

    Article  PubMed  CAS  Google Scholar 

  21. Wang ZG, Rivi R, Delva L, Konig A, Scheinberg DA, Gambacorti-Passerini C, et al. Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PmL and PmL-RARalpha independent manner. Blood. 1998;92:1497–504.

    PubMed  CAS  Google Scholar 

  22. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.

    Article  PubMed  Google Scholar 

  23. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem. 1990;265:4923–8.

    PubMed  CAS  Google Scholar 

  24. Timotheatou D, Ioannou PV, Scozzafava A, Briganti F, Supuran CT. Carbonic anhydrase interaction with lipothioars enites: a novel class of isozymes I and II inhibitors. Met Based Drugs. 1996;3:263–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Authors express their gratitude to Prof. Geoffrey J. Pilkington (School of Pharmacy and Biomedical Sciences, University of Portsmouth) for the kind donation of VC312R cells, Dr. Adrian Robins and Nina Lane (University of Nottingham) for their invaluable help with the FACS analysis, and Iain Ward (University of Nottingham) for his technical support on the confocal microscope. This project is part of a Ph.D. thesis funded by Medway School of Pharmacy, University of Kent/Greenwich, Kent, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi Kallinteri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favretto, M.E., Marouf, S., Ioannou, P. et al. Arsonoliposomes for the Potential Treatment of Medulloblastoma. Pharm Res 26, 2237–2246 (2009). https://doi.org/10.1007/s11095-009-9940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9940-0

KEY WORDS

Navigation