Advertisement

Pharmaceutical Research

, Volume 26, Issue 8, pp 2027–2036 | Cite as

Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy

  • Fiorenza Rancan
  • Dimitrios Papakostas
  • Sabrina Hadam
  • Steffen Hackbarth
  • Thierry Delair
  • Charlotte Primard
  • Bernard Verrier
  • Wolfram Sterry
  • Ulrike Blume-Peytavi
  • Annika VogtEmail author
Research Paper

Abstract

Purpose

The development of particle-based carriers for transepidermal drug delivery has become a field of major interest in dermatology. In this study, we investigated the suitability of biodegradable poly-lactic acid (PLA) particles loaded with fluorescent dyes as carriers for transepidermal drug delivery.

Methods

The penetration profiles of PLA particles (228 and 365 nm) and the release of dye from the particles were investigated in human skin explants using fluorescence microscopy, confocal laser scanning microscopy and flow cytometry.

Results

PLA particles penetrated into 50% of the vellus hair follicles, reaching a maximal depth corresponding to the entry of the sebaceous gland in 12–15% of all observed follicles. The accumulation of particles in the follicular ducts was accompanied by the release of dye to the viable epidermis and its retention in the sebaceous glands for up to 24 h. Kinetic studies in vitro as well as in skin explants revealed, that, although stable in aqueous solution, destabilization of the particles and significant release of incorporated dye occurred upon contact with organic solvents and the skin surface.

Conclusions

These results suggest that particles based on PLA polymers may be ideal carriers for hair follicle and sebaceous gland targeting.

Key words

drug delivery nanoparticles poly-lactic acid skin penetration sebaceous gland 

Abbreviations

Coum-6

coumarin-6

Coum-6_PLA_365

coumarin-6-loaded 365 nm PLA particles

CSSS

cyanoacrylate skin surface stripping

IPM

isopropylmiristate

MFI

mean fluorescence intensity

NPs

nanoparticles

NR

nile red

NR_PLA_228

nile red-loaded 228 nm PLA particles

PCL

poly- ε-caprolactone

PLA

poly lactic-acid

PLGA

poly-lactic-co-glycolic acid

SLN

solid lipid nanoparticles

VHF

vellus hair follicle

Notes

Acknowledgements

This work was partially supported by European funding to B. Verrier through the FP6 STREP Munanovac programme. C. Primard was supported by a fellowship from the Region Rhone-Alpes (France).

Supplementary material

11095_2009_9919_MOESM1_ESM.ppt (4.1 mb)
Fig S1 Cryosections of human skin after topical application of NR_PLA_228 (a-c), Coum-6_PLA_365 (d-f) and 200 nm polystyrene (PS, g-i,) particles and 16 h incubation at 37°C. Images c,f and i show the 4 time magnified image of the marked region in the corresponding sample. Most PLA particles aggregate on the follicle openings while the fluorescent dye diffused into the epidermis. On the contrary, PS particles accumulated in the follicle duct without leaking of the loaded fluorescent dye. (PPT 4160 kb)
11095_2009_9919_MOESM2_ESM.ppt (755 kb)
Fig S2 NR_PLA_228 (a), Coum-6_PLA_365 (b) and polystyrene particles (c,d, Fluospheres, 200 nm) suspended in PBS were incubated 24 h with IPM. Aliquots were then collected at the PBS/IPM interface and observed with a fluorescence microscope. PLA particles form clusters at the water/IPM interface (a,b) while no clusters of PS particles were visible at the interfaces between the two phases. PS particles, in contrast, remained in dispersion in the aqueous buffer phase (c,d). (PPT 755 kb)

References

  1. 1.
    Li L, Lishko V, Hoffman RM. Liposome targeting of high molecular weight DNA to the hair follicles of histocultured skin: a model for gene therapy of the hair growth processes. In Vitro Cell Dev Biol Anim. 1993;29:258–260.CrossRefGoogle Scholar
  2. 2.
    Bernard E, Dubois JL, Wepierre J. Importance of sebaceous glands in cutaneous penetration of an antiandrogen: target effect of liposomes. J Pharm Sci. 1997;86:573–578.PubMedCrossRefGoogle Scholar
  3. 3.
    Li L, Hoffman RM. Topical liposome delivery of molecules to hair follicles in mice. J Dermatol Sci. 1997;14:101–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Controll Release. 2004;99:53–62.CrossRefGoogle Scholar
  5. 5.
    Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting-A promising tool in selective dermatotherapy. J Invest Dermatol Symp Proc. 2005;10:252–255.CrossRefGoogle Scholar
  6. 6.
    Rolland A, Wagner N, Chatelus A, Shroot B, Schaefer H. Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm Res. 1993;10:1738–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Lauer AC, Ramachandran C, Lieb LM, Niemiec S, Weiner ND. Targeted delivery to the pilosebaceous unit via liposomes. Adv Drug Deliv Rev. 1996;18:311–324.CrossRefGoogle Scholar
  8. 8.
    Mordon S, Sumian Ch, Devoisselle JM. Site-specific methylene blue delivery to pilosebaceous structures using highly porous nylon microspheres an experimental evaluation. Lasers Surg Med. 2004;33:119–125.CrossRefGoogle Scholar
  9. 9.
    Lademann J, Knorr F, Richter H, Blume-Peytavi U, Vogt A, Antoniou C, et al. Hair follicles: an efficient storage and penetration pathway for topically applied substances. Skin Pharmacol Physiol. 2008;21:150–155.PubMedCrossRefGoogle Scholar
  10. 10.
    Michel M, L’Heureux L, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim. 1999;35:318–326.PubMedCrossRefGoogle Scholar
  11. 11.
    Teichmann A, Otberg N, Jacobi U, Sterry W, Lademann J. Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances. Skin Pharmacol Physiol. 2006;19:216–223.PubMedCrossRefGoogle Scholar
  12. 12.
    Vogt A, Blume-Peytavi U. Die Biologie des menschlichen Haarfollikels. Hautarzt. 2003;54:692–698.PubMedCrossRefGoogle Scholar
  13. 13.
    Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123:168–176.PubMedCrossRefGoogle Scholar
  14. 14.
    Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1, 500 nm, Nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126:1316–1322.PubMedCrossRefGoogle Scholar
  15. 15.
    Lademann J, Richter H, Schaefer H, Blume-Peytavi U, Teichmann A, Otberg N, et al. Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19:232–236.PubMedCrossRefGoogle Scholar
  16. 16.
    Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–443.PubMedCrossRefGoogle Scholar
  17. 17.
    Warheit DB, Borm PJ, Hennes C, Lademann J. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol. 2007;19:631–643.PubMedCrossRefGoogle Scholar
  18. 18.
    Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol. 2007;20:148–154.PubMedCrossRefGoogle Scholar
  19. 19.
    Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–1712.PubMedGoogle Scholar
  20. 20.
    Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21:166–180.PubMedCrossRefGoogle Scholar
  21. 21.
    Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 2007;7:155–160.PubMedCrossRefGoogle Scholar
  22. 22.
    Ryman-Rasmussen J, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. 2007;127:143–153.PubMedCrossRefGoogle Scholar
  23. 23.
    Maurus PB, Kaeding ChC. Bioabsorbable implant material review. Oper Tech in Sport Med. 2004;12:158–160.CrossRefGoogle Scholar
  24. 24.
    Burgess CM, Quiroga RM. Assessment of the safety and efficacy of poly-L-lactic acid for the treatment of HIV-associated facial lipoatrophy. J Am Acad Dermatol. 2005;52:233–239.PubMedCrossRefGoogle Scholar
  25. 25.
    Beer KR, Rendon MI. Use of Sculptra™ in esthetic rejuvenation. Semin Cutan Med Surg. 2006;25:127–131.PubMedCrossRefGoogle Scholar
  26. 26.
    Mohamed F, Van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008;97:71–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Lamalle-Bernard D, Munier S, Compagnon C, Charles MH, Kalyanaraman KS, Delair T, et al. Co-adsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity. J Control Release. 2006;115:57–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Peiser M, Grutzkau A, Wanner R, Kolde G. CD1a and CD1c cell sorting yields a homogenous population of immature human Langerhans cells. J Immunol Methods. 2003;279:41–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21:1818–1825.PubMedCrossRefGoogle Scholar
  30. 30.
    Vogt A, Hadam S, Heiderhoff M, Audring H, Lademann J, Sterry W, et al. Morphometry of human terminal and vellus hair follicles. Exp Dermatol. 2007;16:946–950.PubMedCrossRefGoogle Scholar
  31. 31.
    Lademann J, Otberg N, Richter H, Weigmann H-J, Lindemann U, Schaefer H, et al. Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol. 2001;14:17–22.PubMedGoogle Scholar
  32. 32.
    Patzelt A, Richter H, Buettemeyer R, Roewert Huber HJ, Blume-Peytavi U, Sterry W, et al. Differential stripping demonstrate a significant reduction of the hair follicle reservoir in vitro compared to in vivo. Eur J Pharm Biopharm. 2008;70:234–238.PubMedCrossRefGoogle Scholar
  33. 33.
    Starcher B, Aycock RL, Hill CH. Multiple roles for elastic fibers in the skin. J Histochem Cytochem. 2005;53:431–443.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Förster resonance energy transfer imaging. Langmuir. 2008;24:5213–5217.PubMedCrossRefGoogle Scholar
  35. 35.
    Matsumoto A, Matsukawa Y, Suzuki T, Yoshino H. Drug release characteristic of multi-reservoir type microspheres, with poly(dl-lactide-co-glycolide) and poly(dl-lactide). J Control Rel. 2005;106:172–180.CrossRefGoogle Scholar
  36. 36.
    Liu SQ, Yang YY, Liu XM, Tong YW. Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-b-poly(D, L-lactide) microspheres for protein delivery. Biomacromolecules. 2003;4:1784–1793.PubMedCrossRefGoogle Scholar
  37. 37.
    Lassalle V, Ferreira ML. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci. 2007;7:767–783.PubMedCrossRefGoogle Scholar
  38. 38.
    Sawicki JA, Anderson DG, Langer R. Nanoparticle delivery of suicide DNA for epithelial ovarian cancer therapy. Adv Exp Med Biol. 2008;622:209–219.PubMedCrossRefGoogle Scholar
  39. 39.
    Sanvicens N, Marco MP. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in Biotechnol. 2008;26:425–33.CrossRefGoogle Scholar
  40. 40.
    Vogt A, Mahé B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008;180:1482–1489.PubMedGoogle Scholar
  41. 41.
    Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Del Rev. 2004;56:581–587.CrossRefGoogle Scholar
  42. 42.
    Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Del Rev. 2007;59:478–490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fiorenza Rancan
    • 1
  • Dimitrios Papakostas
    • 1
  • Sabrina Hadam
    • 1
  • Steffen Hackbarth
    • 2
  • Thierry Delair
    • 3
  • Charlotte Primard
    • 4
  • Bernard Verrier
    • 4
  • Wolfram Sterry
    • 1
  • Ulrike Blume-Peytavi
    • 1
  • Annika Vogt
    • 1
    Email author
  1. 1.Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin ScienceCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Photobiophysik, Institut für PhysikHumboldtd Universität BerlinBerlinGermany
  3. 3.Université de Lyon, Université Lyon 1, UMR CNRS 5223 ‘IMP’Laboratoire des Matériaux Polymères et BiomatériauxVilleurbanne CedexFrance
  4. 4.Institut de Biologie et Chimie des ProtéinesLyon Cedex 07France

Personalised recommendations