Skip to main content

Advertisement

Log in

Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling of Bidirectional Effect of Danshensu on Plasma Homocysteine in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a mechanism-based pharmacokinetic–pharmacodynamic (PK-PD) model to characterize and predict the bidirectional effect of danshensu on plasma total homocysteine (tHcy) in rats described in our previous paper.

Methods

The effect of danshensu on tHcy was assessed in rats after simultaneously methionine loading. Danshensu, its methylated metabolite and tHcy were all quantified after single intravenous injection of 20 mg/kg danshensu. The bidirectional effect, of which, elevated by danshensu methylation and decreased via transsulfuration promotion, was characterized by a PK-PD model, where direct stimulatory sigmoidal function and time-dependent transduction function were introduced for the two effects description, respectively.

Results

Modeling and simulations reveals that: (1) the elevated effect by methylation occurs before the decreased effect via transsulfuration promotion, and the decreased effect is more profoundly dose-dependent than the elevated effect; (2) two steps are simplified to describe the delayed stimulatory effect on the transsulfuration in the model; (3) long term administration of danshensu dose not affect tHcy in normal rats, while it significantly reduces tHcy in rats treated with methionine. This is in consistent with previous report.

Conclusions

The profiles were well-described by our PK-PD model, which constitutes a basis for the future development of mechanism-based model for polyphenols on Hcy in this paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

A c :

amount of danshensu in central compartment (A c,0, initial value)

A m :

amount of methylated metabolite of danshensu (A m,0, initial value)

A p :

amount of danshensu in peripheral compartment (A p,0, initial value)

C :

concentration of danshensu in central compartment

C m :

concentration of methylated metabolite of danshensu

COMT:

catechol-O-methyltransferase

DSS:

danshensu

D T :

changed value of T 2 level

f DSS_kp :

transfer function describing the stimulation of danshensu (C) on k p

f DSS_kt :

transfer function describing the induction of danshensu (C) on the transduction pathway (k t)

f T_kr :

transfer function characterizing the promotion of transit compartment T 2 on k r

Hcy:

homocysteine

k 0 :

zero-order rate constant of methionine production

k 12 :

first-order rate constant of danshensu from central to peripheral compartment

k 21 :

first-order rate constant of danshensu from peripheral to central compartment

k e :

first-order rate constant of danshensu elimination from central compartment

k em :

first-order rate constant of elimination of the metabolite

k m :

first-order rate constant of methylation process

k p :

first-order rate constant of transformation from methionine to Hcy

k r :

first-order rate constant of Hcy elimination

k t :

turnover rate constant of transduction

Met:

methionine

Met-Loading rats:

a general term for (−,M) rats and (D,M) rats

n DSS_kp :

Hill coefficient for danshensu stimulation on Hcy

n Met :

ratio between P 0′ and P 0 in Met-Loading rats

Normal rats:

a general term for (−,−) rats and (D,−) rats

P :

plasma concentration of methionine (P 0 and P 0′, initial concentration in normal rats and Met-Loading rats, respectively)

PD:

pharmacodynamics

PK:

pharmacokinetics

R :

plasma concentration of tHcy (R 0, initial concentration)

SAM:

S-adenosylmethionine

SC50_DSS_kp :

concentration of danshensu producing 50% of S max_DSS_kp

SC50_DSS_kt :

concentration of danshensu producing 50% S max_DSS_kt

S max_DSS_kp :

capacity factor for danshensu stimulation on Hcy

S max_DSS_kt :

capacity factor for danshensu stimulation on k t

S max_T_kr :

capacity factor for transduction-induced stimulation on k r

T 1 and T 2 :

first and second transduction compartment (T 1,0 and T 2,0, initial values)

T 50 :

D T level producing 50% of S max_T_kr

tHcy:

total homocysteine

SAH:

S-adenosyl-l-homocysteine

V d :

apparent distribution volume of danshensu and the metabolite

V d,Met :

apparent distribution volume of methionine

(−,−) group:

rats with normal saline

(D,−) group:

rats with danshensu

(−,M) group:

rats with methionine loading

(D,M) group:

rats with both methionine and danshensu

References

  1. Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 2002;91:18–31. doi:10.1002/jps.1167.

    Article  PubMed  CAS  Google Scholar 

  2. Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today 2008;13:341–6. doi:10.1016/j.drudis.2008.01.003.

    Article  PubMed  CAS  Google Scholar 

  3. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-based drug development. Clin Pharmacol Ther 2007;82:21–32. doi:10.1038/sj.clpt.6100235.

    Article  PubMed  CAS  Google Scholar 

  4. Hayashi N, Tsukamoto Y, Sallas WM. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 2007;63:548–61. doi:10.1111/j.1365-2125.2006.02803.x.

    Article  PubMed  CAS  Google Scholar 

  5. Agoram B, Marino R, George S. Development of a pharmacokinetic pharmacodynamic (PKPD) model to predict onset of hemolytic anemia in (PEG) interferon/ribavirin treated hepatitis-C virus (HCV)-infected patients. Clin Pharmacol Ther 2004;75:78. doi:10.1016/j.clpt.2003.11.296.

    Article  Google Scholar 

  6. Hazra A, Pyszczynski N, Dubois DC. Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 2007;34:643–67. doi:10.1007/s10928-007-9063-3.

    Article  PubMed  CAS  Google Scholar 

  7. Yassen A, Olofsen E, Romberg R. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther 2007;81:50–8. doi:10.1038/sj.clpt.6100025.

    Article  PubMed  CAS  Google Scholar 

  8. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997;337:230–6. doi:10.1056/NEJM199707243370403.

    Article  PubMed  CAS  Google Scholar 

  9. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002;325:1202. doi:10.1136/bmj.325.7374.1202.

    Article  PubMed  Google Scholar 

  10. Reed MC, Nijhout HF, Sparks R, Ulrich CM. A mathematical model of the methionine cycle. J Theor Biol 2004;226:33–43. doi:10.1016/j.jtbi.2003.08.001.

    Article  PubMed  CAS  Google Scholar 

  11. Martinov MV, Vitvitsky VM, Mosharov EV, Banerjee R, Ataullakhanov FI. A substrate switch: a new mode of regulation in the methionine metabolic pathway. J Theor Biol 2000;204:521–32. doi:10.1006/jtbi.2000.2035.

    Article  PubMed  CAS  Google Scholar 

  12. Prudova A, Martinov MV, Vitvitsky VM, Ataullakhanov FI, Banerjee R. Analysis of pathological defects in methionine metabolism using a simple mathematical model. Biochim Biophys Acta 2005;1741:331–8. doi:10.1016/j.bbadis.2005.04.008.

    PubMed  CAS  Google Scholar 

  13. Zhou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005;45:1345–59. doi:10.1177/0091270005282630.

    Article  PubMed  CAS  Google Scholar 

  14. Wu L, Qiao H, Li Y, Li L. Cardioprotective effects of the combined use of puerarin and Danshensu on acute ischemic myocardial injury in rats. Phytother Res 2007;21:751–6. doi:10.1002/ptr.2157.

    Article  PubMed  CAS  Google Scholar 

  15. Chan K, Chui SH, Wong DY, Ha WY, Chan CL, Wong RN. Protective effects of Danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sci 2004;75:3157–71. doi:10.1016/j.lfs.2004.06.010.

    Article  PubMed  CAS  Google Scholar 

  16. Cao YG, Chai JG, Chen YC, Zhao J, Zhou J, Shao JP, et al. Beneficial effects of danshensu, an active component of Salvia miltiorrhiza, on homocysteine metabolism via the trans-sulphuration pathway in rats. Br J Pharmacol 2009; doi:10.1111/j.1476-5381.2009.00179.x.

  17. Hodgson JM, Burke V, Beilin LJ, Croft KD, Puddey IB. Can black tea influence plasma total homocysteine concentrations? Am J Clin Nutr 2003;77:907–11.

    PubMed  CAS  Google Scholar 

  18. de Bree A, Verschuren WM, Blom HJ, Kromhout D. Lifestyle factors and plasma homocysteine concentrations in a general population sample. Am J Epidemiol 2001;154:150–4. doi:10.1093/aje/154.2.150.

    Article  PubMed  Google Scholar 

  19. Plate AY, Crankshaw DL, Gallaher DD. The effect of anesthesia by diethyl ether or isoflurane on activity of cytochrome P450 2E1 and P450 reductases in rat liver. Anesth Analg 2005;101:1063–4. doi:10.1213/01.ane.0000166791.30963.ef table of contents.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang ZC, Xu M, Sun SF, Qiao X, Wang BR, Han J, et al. Metabolic analysis of four phenolic acids in rat by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008;871:7–14. doi:10.1016/j.jchromb.2008.06.019.

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Li X, Wang L, Li Y, Xu Y, Xue M. Simultaneous determination of danshensu, ferulic acid, cryptotanshinone and tanshinone IIA in rabbit plasma by HPLC and their pharmacokinetic application in danxiongfang. J Pharm Biomed Anal 2007;44:1106–12. doi:10.1016/j.jpba.2007.04.033.

    Article  PubMed  CAS  Google Scholar 

  22. Sharma A, Ebling WF, Jusko WJ. Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci 1998;87:1577–84. doi:10.1021/js980171q.

    Article  PubMed  CAS  Google Scholar 

  23. Chen XL, Cai DL, Li Y, Hu TJ. The impact of high methionine diet on the growth and the amino acid metabolism of rats (Article in Chinese). Chin J Clin Nutr 2002;10:248–51.

    Google Scholar 

  24. Sun YN, Jusko WJ. Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J Pharm Sci 1998;87:732–7. doi:10.1021/js970414z.

    Article  PubMed  CAS  Google Scholar 

  25. Perez-Ruixo JJ, Krzyzanski W, Hing J. Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet 2008;47:399–415. doi:10.2165/00003088-200847060-00004.

    Article  PubMed  CAS  Google Scholar 

  26. Sekiya A, Fukada S, Morita T, Kawagishi H, Sugiyama K. Suppression of methionine-induced hyperhomocysteinemia by dietary eritadenine in rats. Biosci Biotechnol Biochem 2006;70:1987–91. doi:10.1271/bbb.60075.

    Article  PubMed  CAS  Google Scholar 

  27. Earp JC, Dubois DC, Molano DS, Pyszczynski NA, Keller CE, Almon RR, et al. Modeling corticosteroid effects in a rat model of rheumatoid arthritis I: mechanistic disease progression model for the time course of collagen-induced arthritis in Lewis rats. J Pharmacol Exp Ther 2008;326:532–45. doi:10.1124/jpet.108.137372.

    Article  PubMed  CAS  Google Scholar 

  28. Perlstein I, Stepensky D, Krzyzanski W, Hoffman A. A signal transduction pharmacodynamic model of the kinetics of the parasympathomimetic activity of low-dose scopolamine and atropine in rats. J Pharm Sci 2002;91:2500–10. doi:10.1002/jps.10243.

    Article  PubMed  CAS  Google Scholar 

  29. Lobo ED, Balthasar JP. Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci 2002;4:E42. doi:10.1208/ps040442.

    Article  PubMed  Google Scholar 

  30. Nijhout HF, Reed MC, Anderson DF, Mattingly JC, James SJ, Ulrich CM. Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate. Epigenetics 2006;1:81–7.

    PubMed  Google Scholar 

  31. Hamelet J, Demuth K, Dairou J, Ledru A, Paul JL, Dupret JM, et al. Effects of catechin on homocysteine metabolism in hyperhomocysteinemic mice. Biochem Biophys Res Commun 2007;355:221–7. doi:10.1016/j.bbrc.2007.01.142.

    Article  PubMed  CAS  Google Scholar 

  32. Ciaccio M, Bivona G, Bellia C. Therapeutical approach to plasma homocysteine and cardiovascular risk reduction. Ther Clin Risk Manag 2008;4:219–24.

    PubMed  CAS  Google Scholar 

  33. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006;354:1578–88. doi:10.1056/NEJMoa055227.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Xiao-Jia Wang, Yue-Miao Yin, Chun-Hua Xu, Ping Wang for technical help with animal and bioanalytical aspects of the studies. This research was supported by the National Natural Science Foundation of the People’s Republic of China (No. 30772609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoquan Liu.

Additional information

Yuancheng Chen, Yanguang Cao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Cao, Y., Zhou, J. et al. Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling of Bidirectional Effect of Danshensu on Plasma Homocysteine in Rats. Pharm Res 26, 1863–1873 (2009). https://doi.org/10.1007/s11095-009-9899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9899-x

KEY WORDS

Navigation