Skip to main content

Advertisement

Log in

Effect of Co-administration of Tacrolimus on the Pharmacokinetics of Multiple Subcutaneous Administered Interferon-Alpha in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Repeated administration of exogenous proteinic compounds triggers the production of specific antibodies. This reaction is limits not only pharmacokinetic studies in animal but also development of human or humanized proteins as drugs. We investigated the effect of co-administration of tacrolimus on pharmacokinetic of human interferon-alpha (h-IFN) following multiple subcutaneous administration in rats.

Methods

h-IFN was administered at a dose of 5 million IU/kg. For some experiments, tacrolimus was also either subcutaneously or intravenously injected in rats at a dose of 0.001 or 0.5 mg/kg as well as with administration of h-IFN.

Results

Multiple administration of h-IFN without co-administration of tacrolimus induced IgG response at 2 or 3 weeks following first administration in the short dosing interval (daily, once per 3 days, or once per a week), irrespective of the dosing interval. Both intravenous and subcutaneous administration of tacrolimus (0.5 mg/kg) with multiple h-IFN injections successfully suppressed IgG response against h-IFN. Interestingly, in lower doses (0.001 mg/kg), intravenous co-administration of tacrolimus showed much stronger suppressive effect than subcutaneous co-administration.

Conclusion

Intravenous co-administration of tacrolimus (0.001 mg/kg) may be a promising way to assess crossover pharmacokinetic study of human or humanized proteinic formulations with multiple dosing schedules in an experimental animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

the area under the serum concentration–time curve

C 1h :

the serum h-IFN concentration at 1 h after administration

C max :

the peak serum concentration

C mix :

concentration of h-IFN in the mixture sample

CTL:

cytotoxic T lymphocytes

CYP3A4:

cytochrome P450 3A4

DDS:

drug delivery system

ELISA:

enzyme-linked immunosorbent assay

h-IFN:

human interferon-alpha

i.m.:

intramuscularly

i.v.:

intravenous

mAb:

monoclonal antibody

OPD:

o-phenylenediamine

P-gp:

P-glycoprotein

POD:

peroxidase

PK:

pharmacokinetic

s.c.:

subcutaneous

T max :

the time to reach the C max

References

  1. Kumar TR, Soppimath K, Nachaegari SK. Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol 2006;7:261–76. doi:10.2174/138920106777950852.

    Article  PubMed  CAS  Google Scholar 

  2. Buckwold VE, Lang W, Scribner C, Blanchett D, Alessi T, Langecker P. Safety pharmacology, toxicology and pharmacokinetic assessment of recombinant human omega-interferon produced from CHO-SS cells. Basic Clin Pharmacol Toxicol 2006;99:62–70. doi:10.1111/j.1742-7843.2006.pto_365.x.

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka K, Lake J, Villamil F, Levy G, Marotta P, Mies S, Hemptinne B, Moench C. Comparison of cyclosporine microemulsion and tacrolimus in 39 recipients of living donor liver transplantation. Liver Transpl. 2005;11:1395–402. doi:10.1002/lt.20508.

    Article  PubMed  Google Scholar 

  4. Kelly D, Jara P, Rodeck B, Lykavieris P, Burdelski M, Becker M, Gridelli B, Boillot O, Manzanares J, Reding R. Tacrolimus and steroids versus ciclosporin microemulsion, steroids, and azathioprine in children undergoing liver transplantation: randomised European multicentre trial. Lancet 2004;364:1054–61. doi:10.1016/S0140-6736(04)17060-8.

    Article  PubMed  CAS  Google Scholar 

  5. Vizcarra C. New perspectives and emerging therapies for immune-mediated inflammatory disorders. J Infus Nurs. 2003;26:319–25. doi:10.1097/00129804-200309000-00008.

    Article  PubMed  Google Scholar 

  6. Steinmann B, Superti-Furga A, Bruckner P. Mechanism of action of FK 506 and cyclosporin. Lancet 1991;337:439. doi:10.1016/0140-6736(91)91225-J.

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki N, Sakane T, Tsunematsu T. Effects of a novel immunosuppressive agent, FK506, on human B cell activation. Clin Exp Immunol. 1990;79:240–5.

    Article  PubMed  CAS  Google Scholar 

  8. Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm. 1978;6:547–58. doi:10.1007/BF01062109.

    Article  PubMed  CAS  Google Scholar 

  9. Louis TA, Lavori PW, Bailar JC 3rd., Polansky M. Crossover and self-controlled designs in clinical research. N Engl J Med. 1984;310:24–31.

    PubMed  CAS  Google Scholar 

  10. Lechler R, Lombardi G. Structural aspects of allorecognition. Curr Opin Immunol. 1991;3:715–21. doi:10.1016/0952-7915(91)90102-7.

    Article  PubMed  CAS  Google Scholar 

  11. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo). 1987;40:1249–55.

    CAS  Google Scholar 

  12. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40:1256–65.

    CAS  Google Scholar 

  13. Starzl TE, Todo S, Fung J, Demetris AJ, Venkataramman R, Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet 1989;2:1000–4. doi:10.1016/S0140-6736(89)91014-3.

    Article  PubMed  CAS  Google Scholar 

  14. Sakuma S, Higashi Y, Sato N, Sasakawa T, Sengoku T, Ohkubo Y, Amaya T, Goto T. Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system. (Comparison with steroids). Int Immunopharmacol. 2001;1:1219–26. doi:10.1016/S1567-5769(01)00059-5.

    Article  PubMed  CAS  Google Scholar 

  15. Mollison KW, Fey TA, Krause RA, Andrews JM, Bretheim PT, Cusick PK, Hsieh GC, Luly JR. Nephrotoxicity studies of the immunosuppressants tacrolimus (FK506) and ascomycin in rat models. Toxicology 1998;125:169–81. doi:10.1016/S0300-483X(97)00167-4.

    Article  PubMed  CAS  Google Scholar 

  16. Akar Y, Yucel G, Durukan A, Yucel I, Arici G. Systemic toxicity of tacrolimus given by various routes and the response to dose reduction. Clin Experiment Ophthalmol. 2005;33:53–9. doi:10.1111/j.1442-9071.2005.00942.x.

    Article  PubMed  Google Scholar 

  17. Ochiai T, Sakamoto K, Gunji Y, Hamaguchi K, Isegawa N, Suzuki T, Shimada H, Hayashi H, Yasumoto A, Asano T. Effects of combination treatment with FK506 and cyclosporine on survival time and vascular changes in renal-allograft-recipient dogs. Transplantation 1989;48:193–97.

    Article  PubMed  CAS  Google Scholar 

  18. Minamino T, Kitakaze M, Ueda Y, Asanuma H, Papst PJ, Kuzuya T, Terada N, Hori M. Chronic treatment with FK506 increases p70 S6 kinase activity associated with reduced nitric oxide synthase activity in rabbit hearts. Cardiovasc Drugs Ther. 2000;14:329–36. doi:10.1023/A:1007890827297.

    Article  PubMed  CAS  Google Scholar 

  19. Andoh TF, Burdmann EA, Bennett WM. Nephrotoxicity of immunosuppressive drugs: experimental and clinical observations. Semin Nephrol. 1997;17:34–45.

    PubMed  CAS  Google Scholar 

  20. de Mattos AM, Olyaei AJ, Bennett WM. Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. Am J Kidney Dis. 2000;35:333–46. doi:10.1016/S0272-6386(00)70348-9.

    Article  PubMed  Google Scholar 

  21. Wills RJ. Clinical pharmacokinetics of interferons. Clin Pharmacokinet. 1990;19:390–9. doi:10.2165/00003088-199019050-00003.

    Article  PubMed  CAS  Google Scholar 

  22. Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, Gonschior AK, Dralle H, Hackbarth I, Sewing KF. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995;23:1315–24.

    PubMed  CAS  Google Scholar 

  23. Leather HL. Drug interactions in the hematopoietic stem cell transplant (HSCT) recipient: what every transplanter needs to know. Bone Marrow Transplant. 2004;33:137–2. doi:10.1038/sj.bmt.1704316.

    Article  PubMed  CAS  Google Scholar 

  24. Takeuchi A, Kaneko S, Matsushita E, Urabe T, Shimoda A, Kobayashi K. Interferon-alpha modulates resistance to cisplatin in three human hepatoma cell lines. J Gastroenterol. 1999;34:351–8. doi:10.1007/s005350050273.

    Article  PubMed  CAS  Google Scholar 

  25. Kawaguchi H, Matsui Y, Watanabe Y, Takakura Y. Effect of interferon-gamma on the pharmacokinetics of digoxin, a P-glycoprotein substrate, intravenously injected into the mouse. J Pharmacol Exp Ther. 2004;308:91–6. doi:10.1124/jpet.103.057521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, H., Miyake, M., Nishibayashi, T. et al. Effect of Co-administration of Tacrolimus on the Pharmacokinetics of Multiple Subcutaneous Administered Interferon-Alpha in Rats. Pharm Res 26, 1832–1837 (2009). https://doi.org/10.1007/s11095-009-9892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9892-4

KEY WORDS

Navigation