Pharmaceutical Research

, Volume 26, Issue 7, pp 1764–1775 | Cite as

Nanoparticle Coated Submicron Emulsions: Sustained In-vitro Release and Improved Dermal Delivery of All-trans-retinol

  • Nasrin Ghouchi Eskandar
  • Spomenka Simovic
  • Clive A. PrestidgeEmail author
Research Paper



The aim of this research is to investigate the dermal delivery of all-trans-retinol from nanoparticle-coated submicron oil-in-water emulsions as a function of the initial emulsifier type, the loading phase of nanoparticles, and the interfacial structure of nanoparticle layers.


The interfacial structure of emulsions was characterized using freeze-fracture-SEM. In-vitro release and skin penetration of all-trans-retinol were studied using Franz diffusion cells with cellulose acetate membrane, and excised porcine skin. The distribution profile was obtained by horizontal sectioning of the skin using microtome-cryostat and HPLC assay.


The steady-state flux of all-trans-retinol from silica-coated lecithin emulsions was decreased (up to 90%) and was highly dependent on the initial loading phase of nanoparticles; incorporation from the aqueous phase provided more pronounced sustained release. For oleylamine emulsions, sustained release effect was not affected by initial location of nanoparticles. The skin retention significantly (p ≤ 0.05) increased and was higher for positive oleylamine-stabilised droplets. All-trans-retinol was mainly localized in the epidermis with deeper distribution to viable skin layers in the presence of nanoparticles, yet negligible permeation (∼1% of topically applied dose) through full-thickness skin.


Sustained release and targeted dermal delivery of all-trans-retinol from oil-in-water emulsions by inclusion of silica nanoparticles is demonstrated.


all-trans-retinol in-vitro release silica nanoparticles skin penetration/permeation submicron emulsion 



The Australian Research Council’s Discovery grant scheme (DP0558920), Itek Pty. Ltd., and BioInnovation SA are acknowledged for the funding. The authors thank Dr. Peter Self for the assistance with the Freeze-Fracture SEM.


  1. 1.
    De Luca LM, Shapiro SS (eds). Modulation of cellular interactions by vitamin A and derivatives (retinoids). New York: New York Academy of Sciences; 1981.Google Scholar
  2. 2.
    Dawson MI, Okamura WH. Chemistry and biology of synthetic retinoids. Boca Raton: CRC; 1990.Google Scholar
  3. 3.
    Koizumi Y. Effect of retinoids on the skin diseases. Fragrance J Jpn 1992;20:26–31.Google Scholar
  4. 4.
    Szuts EZ, Harosi FI. Solubility of retinoids in water. Arch Biochem Biophys 1991;287:297–304. doi: 10.1016/0003-9861(91)90482-X.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee S-C, Yuk H-G, Lee D-H, Lee K-E, Hwang Y-I, Ludescher RD. Stabilization of retinol through incorporation into liposomes. J Biochem Mol Biol 2002;35:358–63.PubMedGoogle Scholar
  6. 6.
    Shefer A, Shefer SD. Stabilised retinol for cosmetic dermatological, and pharmaceutical compositions, and use thereof. US Pat., WO 03/105806 A1, 2003.Google Scholar
  7. 7.
    Alvarez Román R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 2004;21:1818–25. doi: 10.1023/B:PHAM.0000045235.86197.ef.PubMedCrossRefGoogle Scholar
  8. 8.
    Montenegro L, Panico AM, Ventimiglia A, Bonina FP. In vitro retinoic acid release and skin permeation from different liposome formulations. Int J Pharm 1996;133:89–96. doi: 10.1016/0378-5173(95)04422-1.CrossRefGoogle Scholar
  9. 9.
    Lee M-H, Oh S-G, Moon S-K, Bae S-Y. Preparation of silica particles encapsulating retinol using O/W/O multiple emulsions. J Colloid Interface Sci 2001;240:83–9. doi: 10.1006/jcis.2001.7699.PubMedCrossRefGoogle Scholar
  10. 10.
    Weisse S, Perly B, Dalbiez J-P, Baraton-Ouvrard F, Archambault J-C, Andre P, et al. New aqueous gel based on soluble cyclodextrin/vitamin A inclusion complex. J Incl Phenom Macrocycl Chem 2002;44:87–91. doi: 10.1023/A:1023084900159.CrossRefGoogle Scholar
  11. 11.
    Jenning V, Gysler A, Schafer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000;49:211–8. doi: 10.1016/S0939-6411(99)00075-2.PubMedCrossRefGoogle Scholar
  12. 12.
    Jenning V, Schafer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 2000;66:115–26. doi: 10.1016/S0168-3659(99)00223-0.PubMedCrossRefGoogle Scholar
  13. 13.
    Torrado S, Torrado JJ, Cadorniga R. Topical application of albumin microspheres containing vitamin A: drug release and availability. Int J Pharm 1992;86:147–52. doi: 10.1016/0378-5173(92)90191-4.CrossRefGoogle Scholar
  14. 14.
    Swatschek D, Schatton W, Müller WEG, Kreuter J. Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 2002;54:125–33. doi: 10.1016/S0939-6411(02)00046-2.PubMedCrossRefGoogle Scholar
  15. 15.
    Simovic S, Prestidge CA. Nanoparticle layers controlling drug release from emulsions. Eur J Pharm Biopharm 2007;67:39–47. doi: 10.1016/j.ejpb.2007.01.011.PubMedCrossRefGoogle Scholar
  16. 16.
    Binks BP, Lumsdon SO. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 2000;16:8622–31. doi: 10.1021/la000189s.CrossRefGoogle Scholar
  17. 17.
    Binks BP, Whitby CP. Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Colloids Surf A 2005;253:105–15. doi: 10.1016/j.colsurfa.2004.10.116.CrossRefGoogle Scholar
  18. 18.
    Binks BP, Rodrigues JA, Frith WJ. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir 2007;23:3626–36. doi: 10.1021/la0634600.PubMedCrossRefGoogle Scholar
  19. 19.
    Lan Q, Yang F, Zhang S, Liu S, Xu J, Sun D. Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids Surf A 2007;302:126–35. doi: 10.1016/j.colsurfa.2007.02.010.CrossRefGoogle Scholar
  20. 20.
    Simovic S, Prestidge CA. Adsorption of hydrophobic silica nanoparticles at the PDMS droplet-water interface. Langmuir 2003;19:8364–70. doi: 10.1021/la0347197.CrossRefGoogle Scholar
  21. 21.
    Simovic S, Prestidge CA. Colloidosomes from controlled interaction of submicrometer triglyseride droplets and hydrophilic silica nanoparticles. Langmuir 2008;24:7132–7. doi: 10.1021/la800862v.PubMedCrossRefGoogle Scholar
  22. 22.
    Ghouchi-Eskandar N, Simovic S, Prestidge CA. Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions. Phys Chem Chem Phys 2007;9:6426–34. doi: 10.1039/b710256a.PubMedCrossRefGoogle Scholar
  23. 23.
    Technical Bulletin Pigments, Evonik Degussa GmbH, Hanau. (1994).
  24. 24.
    Yan N, Maham Y, Masliyah JH, Gray MR, Mather AE. Measurement of contact angles for fumed silica nanospheres using enthalpy of immersion data. J Colloid Interface Sci 2000;228:1–6. doi: 10.1006/jcis.2000.6856.PubMedCrossRefGoogle Scholar
  25. 25.
    Washington C. Stability of lipid emulsions for drug delivery. Adv Drug Deliv Rev 1996;20:131–45. doi: 10.1016/0169-409X(95)00116-O.CrossRefGoogle Scholar
  26. 26.
    Jenning V, Gohla SH. Encapsulation of retinoids in solid lipid nanoparticles (SLN®). J Microencapsul 2001;18:149–58. doi: 10.1080/02652040010000361.PubMedCrossRefGoogle Scholar
  27. 27.
    Moren M, Gundersen TE, Hamre K. Quantitative and qualitative analysis of retinoids in Artemia and copepods by HPLC and diode array detection. Aquaculture 2005;246:359–65. doi: 10.1016/j.aquaculture.2005.01.017.CrossRefGoogle Scholar
  28. 28.
    Stancher B, Zonta F. Comparison between straight and reversed phases in the high-performance liquid chromatographic fractionation of retinol isomers. J Chromatogr A 1982;234:244–8. doi: 10.1016/S0021-9673(00)81802-6.CrossRefGoogle Scholar
  29. 29.
    Amselem S, Friedman D. Submicron emulsions as drug carriers for topical administration. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. London: Harwood Academic; 1998. p. 153–73.Google Scholar
  30. 30.
    Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen 2001;9:66–76. doi: 10.1046/j.1524-475x.2001.00066.x.PubMedCrossRefGoogle Scholar
  31. 31.
    Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol 1982;62:481–8. doi: 10.1016/0041-008X(82)90149-1.PubMedCrossRefGoogle Scholar
  32. 32.
    Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 2007;20:148–54. doi: 10.1159/000098701.PubMedCrossRefGoogle Scholar
  33. 33.
    Touitou E, Abed L. Effect of propylene glycol, azone and n-decylmethyl sulphoxide on skin permeation kinetics of 5-fluorouracil. Int J Pharm 1985;27:89–98. doi: 10.1016/0378-5173(85)90188-7.CrossRefGoogle Scholar
  34. 34.
    Touitou E, Levi-Schaffer F, Dayan N, Alhaique F, Riccieri F. Modulation of caffeine skin delivery by carrier design: liposomes versus permeation enhancers. Int J Pharm 1994;103:131–6. doi: 10.1016/0378-5173(94)90093-0.CrossRefGoogle Scholar
  35. 35.
    Lehman PA, Slattery JT, Franz TJ. Percutaneous absorption of retinoids: influence of vehicle, light exposure, and dose. J Invest Dermatol 1988;91:56–61. doi: 10.1111/1523-1747.ep12463289.PubMedCrossRefGoogle Scholar
  36. 36.
    Lehman PA, Malany AM. Evidence for percutaneous absorption of isotretinoin from the photo-isomerization of topical tretinoin. J Invest Dermatol 1989;93:595–9. doi: 10.1111/1523-1747.ep12319721.PubMedCrossRefGoogle Scholar
  37. 37.
    Touitou E, Meidan VM, Horwitz E. Methods for quantitative determination of drug localized in the skin. J Control Release 1998;56:7–21. doi: 10.1016/S0168-3659(98)00060-1.PubMedCrossRefGoogle Scholar
  38. 38.
    Field A. Discovering statistics using SPSS. 2nd ed. London: Sage; 2005.Google Scholar
  39. 39.
    Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S, Dubernet C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem Phys Lipids 2004;131:1–13. doi: 10.1016/j.chemphyslip.2004.04.003.PubMedCrossRefGoogle Scholar
  40. 40.
    Simovic S, Prestidge CA. Hydrophilic silica nanoparticles at the PDMS droplet-water interface. Langmuir 2003;19:3785–92. doi: 10.1021/la026803c.CrossRefGoogle Scholar
  41. 41.
    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001;13:123–33. doi: 10.1016/S0928-0987(01)00095-1.PubMedCrossRefGoogle Scholar
  42. 42.
    Nishikawa M, Takakura Y, Hashida M. Biofate of fat emulsions. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. London: Harwood Academic; 1998. p. 99–118.Google Scholar
  43. 43.
    Washington C, Evans K. Release rate measurements of model hydrophobic solutes from submicron triglyceride emulsions. J Control Release 1995;33:383–90. doi: 10.1016/0168-3659(94)00110-G.CrossRefGoogle Scholar
  44. 44.
    Sanganwar GP, Gupta RB. Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. Int J Pharm 2008;360:213–8. doi: 10.1016/j.ijpharm.2008.04.041.PubMedCrossRefGoogle Scholar
  45. 45.
    Golub TP, Koopal LK, Sidorova MP. Adsorption of cationic surfactants on silica surface: 1. adsorption isotherms and surface charge. Colloid J 2004;66:38–43. doi: 10.1023/B:COLL.0000015053.71438.fd.CrossRefGoogle Scholar
  46. 46.
    Sobisch T. On the adsorption of polyoxyethylene p-tert-octylphenyl ether on silica. Colloids Surf 1992;66:11–21. doi: 10.1016/0166-6622(92)80116-J.CrossRefGoogle Scholar
  47. 47.
    Wilkerson VA. The chemistry of human epidermis II. The isoelectric point of the stratum corneum, hair, and nails as determined by electrophoresis. J Biol Chem 1935;112:329–35.Google Scholar
  48. 48.
    Higaki K, Amnuaikit C, Kimura T. Strategies for overcoming the stratum corneum: chemical and physical approaches. Am J Drug Deliv 2003;1:187–214. doi: 10.2165/00137696-200301030-00004.CrossRefGoogle Scholar
  49. 49.
    Takeuchi Y, Yasukawa H, Yamaoka Y, Moromoto Y, Nakao S, Fukumori Y, et al. Destabilization of whole skin lipid bio-liposomes induced by skin penetration enhancers and FT-IR/ATR (Fourier transform infrared/attenuated total reflection) analysis of stratum corneum lipids. Chem Pharm Bull 1992;40:484–7.PubMedGoogle Scholar
  50. 50.
    Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 2008;357:295–304. doi: 10.1016/j.ijpharm.2008.01.045.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 2007;328:191–5. doi: 10.1016/j.ijpharm.2006.08.007.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen H, Chang X, Du D, Liu W, Liu J, Weng T, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 2006;110:296–306. doi: 10.1016/j.jconrel.2005.09.052.PubMedCrossRefGoogle Scholar
  53. 53.
    Lombardi Borgia S, Regehly M, Sivaramakrishnan R, Mehnert W, Korting HC, Danker K, et al. Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J Control Release 2005;110:151–63. doi: 10.1016/j.jconrel.2005.09.045.PubMedCrossRefGoogle Scholar
  54. 54.
    de Jalón EG, Blanco-Príeto MJ, Ygartua P, Santoyo S. Topical application of acyclovir-loaded microparticles: quantification of the drug in porcine skin layers. J Control Release 2001;75:191–7. doi: 10.1016/S0168-3659(01)00395-9.PubMedCrossRefGoogle Scholar
  55. 55.
    Hadgraft J. Skin, the final frontier. Int J Pharm 2001;224:1–18. doi: 10.1016/S0378-5173(01)00731-1.PubMedCrossRefGoogle Scholar
  56. 56.
    Cho SH, Kim SY, Lee SI, Lee YM. Hydroxypropyl-ß-cyclodextrin inclusion complexes for transdermal delivery: preparation, inclusion properties, stability, and release behavior. J Ind Eng Chem 2006;12:50–9.Google Scholar
  57. 57.
    Müller RH, Dingler A. The next generation after the liposomes: solid lipid nanoparticles as dermal carrier in cosmetics. Eurocosmetics 1998;7–8:19–26.Google Scholar
  58. 58.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002;54:S131–55. doi: 10.1016/S0169-409X(02)00118-7.PubMedCrossRefGoogle Scholar
  59. 59.
    Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–77. doi: 10.1016/S0939-6411(00)00087-4.PubMedCrossRefGoogle Scholar
  60. 60.
    Dingler A, Blum RP, Neihus H, Müller RH, Gohla S. Solid lipid nanoparticles (SLN™/Lipopearls™)—a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul 1999;16:751–67. doi: 10.1080/026520499288690.PubMedCrossRefGoogle Scholar
  61. 61.
    Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 2007;127:1701–12.PubMedGoogle Scholar
  62. 62.
    Binks BP, editor. Modern aspects of emulsion science. Cambridge: The Royal Society of Chemistry; 1998.Google Scholar
  63. 63.
    Thieme J, Abend S, Lagaly G. Aggregation in Pickering emulsions. Colloid Polym Sci 1999;277:257–60. doi: 10.1007/PL00013752.CrossRefGoogle Scholar
  64. 64.
    Levine S, Bowen BD, Partridge SJ. Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface. Colloids Surf 1989;38:325–43. doi: 10.1016/0166-6622(89)80271-9.CrossRefGoogle Scholar
  65. 65.
    Yan Y, Masliyah JH. Solids-stabilized oil-in-water emulsions: scavenging of emulsion droplets by fresh oil addition. Colloids Surf A 1993;75:123–32. doi: 10.1016/0927-7757(93)80423-C.CrossRefGoogle Scholar
  66. 66.
    Abend S, Lagaly G. Bentonite and double hydroxides as emulsifying agents. Clay Miner 2001;36:557–70. doi: 10.1180/0009855013640009.CrossRefGoogle Scholar
  67. 67.
    Sivaramakrishnan R, Nakamura C, Mehnert W, Korting HC, Kramer KD, Schäfer-Korting M. Glucocorticoid entrapment into lipid carriers—characterisation by parelectric spectroscopy and influence on dermal uptake. J Control Release 2004;97:493–502.PubMedGoogle Scholar
  68. 68.
    Baroli B. Nanoparticles and skin penetration. Are there any potential toxicological risks? J Verbr Lebensm 2008;3:330–1.CrossRefGoogle Scholar
  69. 69.
    Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed 2007;46:7548–58. doi: 10.1002/anie.200604488.CrossRefGoogle Scholar
  70. 70.
    Nohynek GJ, Lademann Jr, Ribaud C, Roberts MS. Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007;37:251–77. doi: 10.1080/10408440601177780.PubMedCrossRefGoogle Scholar
  71. 71.
    Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 2004;15:321–5. doi: 10.1023/B:JMSM.0000021095.36878.1b.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nasrin Ghouchi Eskandar
    • 1
  • Spomenka Simovic
    • 1
  • Clive A. Prestidge
    • 1
    Email author
  1. 1.Ian Wark Research Institute, ARC Special Research Centre for Particle and Material InterfacesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations