Pharmaceutical Research

, Volume 26, Issue 7, pp 1596–1606 | Cite as

Phase Transitions in Frozen Systems and During Freeze–Drying: Quantification Using Synchrotron X-Ray Diffractometry

  • Dushyant B. Varshney
  • Prakash Sundaramurthi
  • Satyendra Kumar
  • Evgenyi Y. Shalaev
  • Shin-Woong Kang
  • Larry A. Gatlin
  • Raj Suryanarayanan
Research Paper



(1) To develop a synchrotron X-ray diffraction (SXRD) method to monitor phase transitions during the entire freeze–drying cycle. Aqueous sodium phosphate buffered glycine solutions with initial glycine to buffer molar ratios of 1:3 (17:50 mM), 1:1 (50 mM) and 3:1 were utilized as model systems. (2) To investigate the effect of initial solute concentration on the crystallization of glycine and phosphate buffer salt during lyophilization.


Phosphate buffered glycine solutions were placed in a custom-designed sample cell for freeze–drying. The sample cell, covered with a stainless steel dome with a beryllium window, was placed on a stage capable of controlled cooling and vacuum drying. The samples were cooled to −50°C and annealed at −20°C. They underwent primary drying at −25°C under vacuum until ice sublimation was complete and secondary drying from 0 to 25°C. At different stages of the freeze–drying cycle, the samples were periodically exposed to synchrotron X-ray radiation. An image plate detector was used to obtain time-resolved two-dimensional SXRD patterns. The ice, β-glycine and DHPD phases were identified based on their unique X-ray peaks.


When the solutions were cooled and annealed, ice formation was followed by crystallization of disodium hydrogen phosphate dodecahydrate (DHPD). In the primary drying stage, a significant increase in DHPD crystallization followed by incomplete dehydration to amorphous disodium hydrogen phosphate was evident. Complete dehydration of DHPD occurred during secondary drying. Glycine crystallization was inhibited throughout freeze–drying when the initial buffer concentration (1:3 glycine to buffer) was higher than that of glycine.


A high-intensity X-ray diffraction method was developed to monitor the phase transitions during the entire freeze–drying cycle. The high sensitivity of SXRD allowed us to monitor all the crystalline phases simultaneously. While DHPD crystallizes in frozen solution, it dehydrates incompletely during primary drying and completely during secondary drying. The impact of initial solute concentration on the phase composition during the entire freeze–drying cycle was quantified.

Key words

disodium hydrogen phosphate dodecahydrate glycine in situ freeze–drying phase transitions phosphate buffer synchrotron X-ray diffraction 


  1. 1.
    M. J. Pikal. Freeze Drying. In J. Swarbrickand, and J. C. Boylan (eds.), Encyclopedia of Pharmaceutical Technology, Marcel Dekker, , New York, 2002, pp. 1299–1326.Google Scholar
  2. 2.
    J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable lyophilized protein formulations: some practical advice. Pharm. Res. 14:969–975 (1997). doi:10.1023/A:1012180707283.PubMedCrossRefGoogle Scholar
  3. 3.
    X. Tang, and M. J. Pikal. Design of freeze–drying processes for pharmaceuticals: practical advice. Pharm. Res. 21:191–200 (2004). doi:10.1023/B:PHAM.0000016234.73023.75.PubMedCrossRefGoogle Scholar
  4. 4.
    L. A. Trissel. Handbook of injectable drugs. ASHP, Bethesda, MD, 1994.Google Scholar
  5. 5.
    K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Raffinose crystallization during freeze–drying and its impact on recovery of protein activity. Pharm. Res. 22:303–309 (2005). doi:10.1007/s11095-004-1198-y.PubMedCrossRefGoogle Scholar
  6. 6.
    X. Liao, R. Krishnamurthy, and R. Suryanarayanan. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze–drying. Pharm. Res. 22:1978–1985 (2005). doi:10.1007/s11095-005-7625-x.PubMedCrossRefGoogle Scholar
  7. 7.
    K. A. Pikal-Cleland, J. L. Cleland, T. J. Anchordoquy, and J. F. Carpenter. Effect of glycine on pH changes and protein stability during freeze–thawing in phosphate buffer systems. J. Pharm. Sci. 91:1969–1979 (2002). doi:10.1002/jps.10184.PubMedCrossRefGoogle Scholar
  8. 8.
    T. W. Randolph. Phase separation of excipients during lyophilization: effects on protein stability. J. Pharm. Sci. 86:1198–1203 (1997). doi:10.1021/js970135b.PubMedCrossRefGoogle Scholar
  9. 9.
    E. Y. Shalaev. The impact of buffer on processing and stability of freeze–dried dosage forms, part 1: solution freezing behavior. Am. Pharm. Rev. 8:80–87 (2005).Google Scholar
  10. 10.
    E. Y. Shalaev, F. Franks, and P. Echlin. Crystalline and amorphous phases in the ternary system water-sucrose-sodium chloride. J. Phy. Chem. 100:1144–1152 (1996). doi:10.1021/jp951052r.CrossRefGoogle Scholar
  11. 11.
    R. K. Cavatur, and R. Suryanarayanan. Characterization of frozen aqueous solutions by low temperature X-ray powder diffractometry. Pharm. Res. 15:194–199 (1998). doi:10.1023/A:1011950131312.PubMedCrossRefGoogle Scholar
  12. 12.
    R. K. Cavatur, and R. Suryanarayanan. Characterization of phase transitions during freeze–drying by in situ X-ray powder diffractometry. Pharm. Dev. Technol. 3:579–586 (1998). doi:10.3109/10837459809028642.PubMedCrossRefGoogle Scholar
  13. 13.
    J. A. Searles, J. F. Carpenter, and T. W. Randolph. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg’ in pharmaceutical lyophilization. J. Pharm. Sci. 90:872–887 (2001). doi:10.1002/jps.1040.PubMedCrossRefGoogle Scholar
  14. 14.
    A. Pyne, K. Chatterjee, and R. Suryanarayanan. Solute crystallization in mannitol-glycine systems - implications on protein stabilization in freeze–dried formulations. J. Pharm. Sci. 92:2272–2283 (2003). doi:10.1002/jps.10487.PubMedCrossRefGoogle Scholar
  15. 15.
    G. Gomez. Crystallization related pH changes during freezing of sodium phosphate buffer solutions. Ph.D. dissertation, Department of Pharmaceutics, University of Michigan, Ann Arbor, 1995, p. 188.Google Scholar
  16. 16.
    G. Gomez, M. J. Pikal, and N. Rodriguez-Hornedo. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharm. Res. 18:90–97 (2001). doi:10.1023/A:1011082911917.PubMedCrossRefGoogle Scholar
  17. 17.
    L. van den Berg. pH changes in buffers and foods during freezing and subsequent storage. Cryobiol. 3:236–242 (1966). doi:10.1016/S0011-2240(66)80017-2.CrossRefGoogle Scholar
  18. 18.
    L. van den Berg, and D. Rose. Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4–Na2HPO4–H2O. Arch. Biochem. Biophys. 81:319–329 (1959). doi:10.1016/0003-9861(59)90209-7.CrossRefGoogle Scholar
  19. 19.
    D. B. Varshney, S. Kumar, E. Y. Shalaev, S.-W. Kang, L. A. Gatlin, and R. Suryanarayanan. Solute crystallization in frozen systems-use of synchrotron radiation to improve sensitivity. Pharm. Res. 23:2368–2374 (2006). doi:10.1007/s11095-006-9051-0.PubMedCrossRefGoogle Scholar
  20. 20.
    K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery.. J. Pharm. Sci. 94:809–820 (2005). doi:10.1002/jps.20304.PubMedCrossRefGoogle Scholar
  21. 21.
    M. J. Akers, N. Milton, S. R. Byrn, and S. L. Nail. Glycine crystallization during freezing: the effect of salt form, pH, and ionic strength. Pharm. Res. 12:1457–1461 (1995). doi:10.1023/A:1016223101872.PubMedCrossRefGoogle Scholar
  22. 22.
    S. Chongprasert, S. A. Knopp, and S. L. Nail. Characterization of frozen solutions of glycine. J. Pharm. Sci. 90:1720–1728 (2001). doi:10.1002/jps.1121.PubMedCrossRefGoogle Scholar
  23. 23.
    C. S. Towler, R. J. Davey, R. W. Lancaster, and C. J. Price. Impact of molecular speciation on crystal nucleation in polymorphic systems: The conundrum of γ-glycine and molecular “self poisoning". J. Am. Chem. Soc. 126:13347–13353 (2004). doi:10.1021/ja047507k.PubMedCrossRefGoogle Scholar
  24. 24.
    D. B. Varshney, S. Kumar, E. Y. Shalaev, P. Sundaramurthi, S.-W. Kang, L. A. Gatlin, and R. Suryanarayanan. Glycine crystallization in frozen and freeze–dried systems: effect of pH and buffer concentration. Pharm. Res. 24:593–604 (2007). doi:10.1007/s11095-006-9178-z.PubMedCrossRefGoogle Scholar
  25. 25.
    L. Yu, and K. Ng. Glycine crystallization during spray drying: the pH effect on salt and polymorphic forms. J. Pharm. Sci. 91:2367–2375 (2002). doi:10.1002/jps.10225.PubMedCrossRefGoogle Scholar
  26. 26.
    E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and E.S. Shutova. Polymorphism of glycine - thermodynamic aspects. Part 1. relative stability of polymorphs. J. Therm. Anal. Cal. 73:409–418 (2003). doi:10.1023/A:1025405508035.CrossRefGoogle Scholar
  27. 27.
    E. S. Ferrari, R. J. Davey, W. I. Cross, A. L. Gillon, and C. S. Towler. Crystallization in polymorphic systems: the solution-mediated transformation of β to α glycine. Cryst. Growth Des. 3:53–60 (2003). doi:10.1021/cg025561b.CrossRefGoogle Scholar
  28. 28.
    G. L. Perlovich, L. K. Hansen, and A. Bauer-Brandl. The polymorphism of glycine—thermochemical and structural aspects. J. Therm. Anal. Cal. 66:699–715 (2001). doi:10.1023/A:1013179702730.CrossRefGoogle Scholar
  29. 29.
    H. Sakai, H. Hosogai, T. Kawakita, K. Onuma, and K. Tsukamoto. Transformation of α-glycine to γ-glycine. J. Cryst. Growth. 116:421–426 (1992). doi:10.1016/0022-0248(92)90651-X.CrossRefGoogle Scholar
  30. 30.
    K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent. J. Pharm. Sci. 94:798–808 (2005). doi:10.1002/jps.20303.PubMedCrossRefGoogle Scholar
  31. 31.
    T. D. Davis, G. E. Peck, J. G. Stowell, K. R. Morris, and S. R. Byrn. Modelling and monitoring of polymorphic transformations during the drying phase of wet granulation. Pharm. Res. 21:860–866 (2004). doi:10.1023/ Scholar
  32. 32.
    X. Li, and S. L. Nail. Kinetics of glycine crystallization during freezing of sucrose/glycine excipient systems. J. Pharm. Sci. 94:625–631 (2005). doi:10.1002/jps.20286.PubMedCrossRefGoogle Scholar
  33. 33.
    Powder Diffraction File. hexagonal ice, card#00-042-1142; disodium hydrogen phosphate dodecahydrate, card#00-011-0657; α-glycine, card#00-032-1702; β-glycine, card#00-002-0171; γ-glycine, card#00-006-0230 International Centre for Diffraction Data, Newtown Square, PA (1996).Google Scholar
  34. 34.
    A. Pyne, K. Chatterjee, and R. Suryanarayanan. Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying. J. Pharm. Sci. 20:802–803 (2003).Google Scholar
  35. 35.
    A. Pyne, and R. Suryanarayanan. Phase transitions of glycine in frozen aqueous solutions and during freeze–drying. Pharm. Res. 18:1448–1454 (2001). doi:10.1023/A:1012209007411.PubMedCrossRefGoogle Scholar
  36. 36.
    I. Weissbuch, V. Y. Torbeev, L. Leiserowitz, and M. Lahav. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. 44:3226–3229 (2005). doi:10.1002/anie.200500164.CrossRefGoogle Scholar
  37. 37.
    E. Y. Shalaev, D. V. Malakhov, A. N. Kanev, V. I. Kosyakov, F. V. Tuzikov, N. A. Varaksin, and V.I. Vavilin. Study of the phase diagram water fraction of the system water-glycine-sucrose by DTA and X-ray diffraction methods. Thermochim. Acta. 196:213–220 (1992). doi:10.1016/0040-6031(92)85021-M.CrossRefGoogle Scholar
  38. 38.
    T. Suzuki, and F. Franks. Solid-liquid phase transitions and amorphous states in ternary sucrose–glycine–water systems. J. Chem. Soc. Farad. Trans. 89:3283–3288 (1993). doi:10.1039/ft9938903283.CrossRefGoogle Scholar
  39. 39.
    R. Govindarajan, K. Chatterjee, L. Gatlin, R. Suryanarayanan, and E. Y. Shalaev. Impact of freeze–drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems. J. Pharm. Sci. 95:1498–1510 (2006). doi:10.1002/jps.20620.PubMedCrossRefGoogle Scholar
  40. 40.
    N. Blagden, R. J. Davey, M. Song, M. Quayle, S. Clark, D. Taylor, and A. Nield. A novel batch cooling crystallizer for in situ monitoring of solution crystallization using energy dispersive X-ray diffraction. Cryst. Growth Des. 3:197–201 (2003). doi:10.1021/cg020053n.CrossRefGoogle Scholar
  41. 41.
    C. Nunes. Use of high-intensity X-radiation in solid-state characterization of pharmaceuticals. Ph.D. dissertation, Department of Pharmaceutics, University of Minnesota, Minneapolis, 2005, p. 197.Google Scholar
  42. 42.
    C. Nunes, A. Mahendrasingam, and R. Suryanarayanan. Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm. Res. 22:1942–1953 (2005). doi:10.1007/s11095-005-7626-9.PubMedCrossRefGoogle Scholar
  43. 43.
    A. P. Hammersley, M. Hanfland, A. N. Fitch, and D. Hausermann. Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press. Res. 14:235–248 (1996). doi:10.1080/08957959608201408.CrossRefGoogle Scholar
  44. 44.
    A. P. Hammersley. ESRF internal report, ESRF97HA02T. “Fit2D: an introduction and overview”. (1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dushyant B. Varshney
    • 1
    • 2
  • Prakash Sundaramurthi
    • 1
  • Satyendra Kumar
    • 3
  • Evgenyi Y. Shalaev
    • 4
  • Shin-Woong Kang
    • 3
  • Larry A. Gatlin
    • 4
  • Raj Suryanarayanan
    • 1
  1. 1.Department of Pharmaceutics, College of PharmacyUniversity of MinnesotaMinneapolisUSA
  2. 2.Pharmaceutical Sciences Departmentsanofi-aventisBridgewaterUSA
  3. 3.Department of PhysicsKent State UniversityKentUSA
  4. 4.Pfizer Groton LaboratoriesGrotonUSA

Personalised recommendations