Skip to main content
Log in

The Impact of Dose and Solubility of Additives on the Release from HPMC Matrix Tablets—Identifying Critical Conditions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The dissolution of HPMC matrix tablets containing different amounts of highly soluble (mannitol) or poorly soluble (dicalcium phosphate, DCP) was studied to deduce the parameters critical to release robustness.

Methods

The release of HPMC and additives was studied using a modified USP II method at two paddle stirring rates, 50 and 125 rpm, at HPMC content varying from 15% to 100%.

Results

At HPMC contents between 30% and 35% a critical point was identified and found crucial to the release from the HPMC/mannitol tablets. Below this point the matrix rapidly disintegrated in a non robust manner. At higher HPMC contents the mannitol release became increasingly diffusion controlled with maintained matrix integrity. The release robustness was lower for HPMC/DCP than HPMC/mannitol tablets at high HPMC contents, however, lacking critical points. The critical point was interpreted as the percolation threshold for HPMC and differences explained in terms of water transport into the matrix.

Conclusion

The release robustness was lower for formulations with additives of low solubility having an erosion controlled release than for additives with higher solubility and a diffusion controlled release. However, for additives creating a steep osmotic pressure gradient, an HPMC content above the percolation threshold becomes vital for maintaining the release robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.A. Alderman. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Tech Prod. 5:1–9 (1984).

    CAS  Google Scholar 

  2. T.D. Reynolds, S.H. Gehrke, A.S. Hussain, and S.L.S. Shenouda. Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices. J Pharm Sci. 87:1115–1123 (1998) doi:10.1021/js980004q.

    Article  PubMed  CAS  Google Scholar 

  3. B. Abrahamsson, M. Alpsten, B. Bake, A. Larsson, and J. Sjögren. In vitro and in vivo erosion of two different hydrophilic gel matrix tablets. Eur J Pharm and Biopharm. 46:69–75 (1998) doi:10.1016/S0939-6411(98)00002-2.

    Article  CAS  Google Scholar 

  4. K. Sako, T. Sawada, H. Nakashima, S. Yokohama, and T. Sonobe. Influence of water soluble fillers in hydroxypropylmethylcellulose matrices on in vitro and in vivo drug release. J Control Release. 81:165–172 (2002) doi:10.1016/S0168-3659(02)00067-6.

    Article  PubMed  CAS  Google Scholar 

  5. B. Abrahamsson, K. Roos, and J. Sjögren. Investigation of prandial effects on hydrophilic matrix tablets. Drug Dev and Ind Pharm. 25:765–771 (1999) doi:10.1081/DDC-100102236.

    Article  CAS  Google Scholar 

  6. P. Colombo, R. Bettini, P. Santi, and A.N. Peppas. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today. 3:198–204 (2000) doi:10.1016/S1461-5347(00)00269-8.

    Article  PubMed  CAS  Google Scholar 

  7. A.N. Peppas. Hydrogels in medicine and pharmacy, properties and applications, vol III. CRS, Boca Raton, Florida, 2000, pp. 27–56.

    Google Scholar 

  8. R.T. Ju, P.R. Nixon, and M.V. Patel. Drug release from hydrophilic matrices. 1. New scaling law for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer. J Pharm Sci. 84:1455–1463 (1995) doi:10.1002/jps.2600841213.

    Article  PubMed  CAS  Google Scholar 

  9. A. K, rner, A. Larsson, L. Piculell, and B. Wittgren. Molecular information on the dissolution of polydisperse polymers: mixtures of long and short poly(ethylene oxide). J Phys Chem. 109:11530–11537 (2005).

    Google Scholar 

  10. S. Jamzad, L. Tutunji, and R. Fassihi. Analysis of macromolecular changes and drug release from hydrophilic matrix systems. Int J Pharm. 292:75–85 (2005) doi:10.1016/j.ijpharm.2004.11.011.

    Article  PubMed  CAS  Google Scholar 

  11. H. Leuenberger, B.D. Rohera, and C. Haas. Percolation theory—a novel approach to solid dosage form design. Int J Pharm. 38:109–115 (1987) doi:10.1016/0378-5173(87)90105-0.

    Article  CAS  Google Scholar 

  12. I. Fuertes, A. Miranda, M. Millán, and I. Caraballo. Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets. Eur J Pharm Biopharm. 64:336–342 (2006) doi:10.1016/j.ejpb.2006.05.009.

    Article  PubMed  CAS  Google Scholar 

  13. A. Miranda, M. Millán, and I. Caraballo. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery. Int J Pharm. 311:75–81 (2006) doi:10.1016/j.ijpharm.2005.12.012.

    Article  PubMed  CAS  Google Scholar 

  14. A. Miranda, M. Millán, and I. Caraballo. Investigation of the influence of particle size on the excipient percolation thresholds of HPMC hydrophilic matrix tablets. J Pharm Sci. 96:2746–2756 (2007) doi:10.1002/jps.20912.

    Article  PubMed  CAS  Google Scholar 

  15. T. Goncalves-Araújo, A.R. Rajabi-Siahboomi, and I. Caraballo. Application of percolation theory in the study of an extended release Verapamil hydrochloride formulation. Int J Pharm. 361:112–117 (2008) doi:10.1016/j.ijpharm.2008.05.022.

    Article  PubMed  Google Scholar 

  16. F. Tajarobi, S. Abrahmsén-Alami, A.S. Carlsson, and A. Larsson. Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets. Eur J Pharm Sci (2009). doi:10.1016/j.ejps.2009.01.008.

  17. J. Johansson, S. Folestad, and B. Abrahamsson. Novel process analytical methodology to establish design space and real time prediction of dissolution. AAPS Workshop on Challenges for Dissolution Testing for the 21st Century, Arlington, VA, USA, May 1–3. (2006).

  18. P. Timmins, A.M. Delargy, C.M. Minchom, and J.R. Howard. Influence of some process variables on product properties for a hydrophilic matrix controlled release tablet. Eur J Pharm Biopharm. 38:113–118 (1992).

    CAS  Google Scholar 

  19. M.V. Velasco, J.L. Ford, P. Rowe, and A.R. Rajabi-Siahhoomi. Influence of drug:hydroxypropyl methyl cellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Control Release. 57:75–85 (1999) doi:10.1016/S0168-3659(98)00110-2.

    Article  PubMed  CAS  Google Scholar 

  20. M. Levinaand, and A.R. Rajabi-Siahboomi. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 93:2746–2754 (2004) doi:10.1002/jps.20181.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge AstraZeneca and Swedish Knowledge Foundation (particularly the YPK-project) for funding this work. Sincere thanks to Anders S. Carlsson and Jonas Johansson at AstraZeneca for their advisory and technical assistance with the analytical methods (LC-MS) and FBRM-technology, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Tajarobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajarobi, F., Abrahmsén-Alami, S., Hansen, M. et al. The Impact of Dose and Solubility of Additives on the Release from HPMC Matrix Tablets—Identifying Critical Conditions. Pharm Res 26, 1496–1503 (2009). https://doi.org/10.1007/s11095-009-9861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9861-y

KEY WORDS

Navigation