Skip to main content

Advertisement

Log in

Effects of Ionic Strength on Passive and Iontophoretic Transport of Cationic Permeant Across Human Nail

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport.

Methods

Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail.

Results

Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts.

Conclusions

The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. P. R. Dawber, D. A. R. deBerker, and R. Baran. Science of the nail apparatus. In R. Baran, R. P. R. Dawber, D. A. R. deBerker, E. Haneke, and A. Tosti (eds.), Baran and Dawber’s Diseases of the Nails and their Management, Blackwell Science, Oxford, 2001, pp. 1–48.

    Chapter  Google Scholar 

  2. R. P. R. Dawber, and R. Baran. Structure, embryology, comparative anatomy and physiology of the nail. In R. Baran, and R. P. R. Dawber (eds.), Baran and Dawber’s Diseases of the Nails and their Management, Blackwell Science, Boston, 1984, pp. 1–23.

    Google Scholar 

  3. M. Gniadecka, O. Faurskov Nielsen, D. H. Christensen, and H. C. Wulf. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J. Invest. Dermatol. 110:393–398 (1998). doi:10.1046/j.1523-1747.1998.00146.x.

    Article  PubMed  CAS  Google Scholar 

  4. A. L. Lorincz, and R. B. Stoughton. Specific metabolic processes of skin. Physiol. Rev. 38:481–502 (1958).

    PubMed  CAS  Google Scholar 

  5. J. L. Marty. Amorolfine nail lacquer: a novel formulation. JEADV. 4:S17–S21 (1995). doi:10.1016/0926-9959(94)00075-B.

    Google Scholar 

  6. B. Schulz, D. Chan, J. Backstrom, M. Rubhausen, K. P. Wittern, S. Wessel, R. Wepf, and S. Williams. Hydration dynamics of human fingernails: an ellipsometric study. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65:061913–1–061913-7 (2002).

    PubMed  CAS  Google Scholar 

  7. R. I. C. Spearman. The physiology of the nail. In A. Jarrett (ed.), The Physiology and Pathophysiology of the Skin, Vol. 5: The Sweat Glands, Skin, Permeation, Lymphatics, the Nails, Academic, New York, 1973, pp. 1812–1853.

    Google Scholar 

  8. Y. Kobayashi, T. Komatsu, M. Sumi, S. Numajiri, M. Miyamoto, D. Kobayashi, K. Sugibayashi, and Y. Morimoto. In vitro permeation of several drugs through the human nail plate: relationship between physicochemical properties and nail permeability of drugs. Eur. J. Pharm. Sci. 21:471–477 (2004). doi:10.1016/j.ejps.2003.11.008.

    Article  PubMed  CAS  Google Scholar 

  9. D. Mertin, and B. C. Lippold. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: prediction of the penetration rate of antimycotics through the nail plate and their efficacy. J. Pharm. Pharmacol. 49:866–872 (1997).

    PubMed  CAS  Google Scholar 

  10. D. Mertin, and B. C. Lippold. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: penetration of chloramphenicol from lipophilic vehicles and a nail lacquer. J. Pharm. Pharmacol. 49:241–245 (1997).

    PubMed  CAS  Google Scholar 

  11. D. Mertin, and B. C. Lippold. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: influence of the partition coefficient octanol/water and the water solubility of drugs on their permeability and maximum flux. J. Pharm. Pharmacol. 49:30–34 (1997).

    PubMed  CAS  Google Scholar 

  12. K. A. Walters, G. L. Flynn, and J. R. Marvel. Physicochemical characterization of the human nail: I. Pressure sealed apparatus for measuring nail plate permeabilities. J. Invest. Dermatol. 76:76–79 (1981). doi:10.1111/1523-1747.ep12525318.

    Article  PubMed  CAS  Google Scholar 

  13. K. A. Walters, G. L. Flynn, and J. R. Marvel. Physicochemical characterization of the human nail: permeation pattern for water and the homologous alcohols and differences with respect to the stratum corneum. J. Pharm. Pharmacol. 35:28–33 (1983).

    PubMed  CAS  Google Scholar 

  14. K. A. Walters, G. L. Flynn, and J. R. Marvel. Physicochemical characterization of the human nail: solvent effects on the permeation of homologous alcohols. J. Pharm. Pharmacol. 37:771–775 (1985).

    PubMed  CAS  Google Scholar 

  15. K. A. Walters, G. L. Flynn, and J. R. Marvel. Penetration of the human nail plate: the effects of vehicle pH on the permeation of miconazole. J. Pharm. Pharmacol. 37:498–499 (1985).

    PubMed  CAS  Google Scholar 

  16. A. Srebrnik, S. Levtov, R. Ben-Ami, and S. Brennert. Liver failure and transplantation after itraconazole treatment for toenail onychomycosis. JEADV. 19:205–207 (2005). doi:10.1111/j.1468-3083.2005.00943.x.

    PubMed  CAS  Google Scholar 

  17. C. O. Wilson, J. H. Block, O. Gisvold, and J. M. Beale. Appendix, Wilson and Gisvold’s Textbook of Organic, Medicinal and Pharmaceutical Chemistry. Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 948–956.

    Google Scholar 

  18. J. Hao, and S. K. Li. Transungual iontophoretic transport of polar neutral and positively charged model permeants: effects of electrophoresis and electroosmosis. J. Pharm. Sci. 97:893–905 (2008). doi:10.1002/jps.21025.

    Article  PubMed  CAS  Google Scholar 

  19. J. Hao, K. A. Smith, and S. K. Li. Chemical method to enhance transungual transport and iontophoresis efficiency. Int. J. Pharm. 357:61–69 (2008). doi:10.1016/j.ijpharm.2008.01.027.

    Article  PubMed  CAS  Google Scholar 

  20. R. H. Khengar, S. A. Jones, R. B. Turner, B. Forbes, and M. B. Brown. Nail swelling as a pre-formulation screen for the selection and optimisation of ungual penetration enhancers. Pharm. Res. 24:2207–2212 (2007). doi:10.1007/s11095-007-9368-3.

    Article  PubMed  CAS  Google Scholar 

  21. M. P. James, R. M. Graham, and J. English. Percutaneous iontophoresis of prednisolone—a pharmacokinetic study. Clin. Exp. Dermatol. 11:54–61 (1986). doi:10.1111/j.1365-2230.1986.tb00424.x.

    Article  PubMed  CAS  Google Scholar 

  22. S. N. Murthy, D. E. Wiskirchen, and C. P. Bowers. Iontophoretic drug delivery across human nail. J. Pharm. Sci. 96:305–311 (2007). doi:10.1002/jps.20757.

    Article  CAS  Google Scholar 

  23. J. Hao, and S. K. Li. Mechanistic study of transungual electroosmosis transport across hydrated nail plates: effects of pH and ionic Strength. J. Pharm. Sci. 97:5186–5197 (2008). doi:10.1002/jps.21368.

    Article  PubMed  CAS  Google Scholar 

  24. S. N. Murthy, D. C. Waddell, H. N. Shivakumar, A. Balaji, and C. P. Bowers. Iontophoretic permselective property of human nail. J. Dermatol. Sci. 46:150–152 (2007). doi:10.1016/j.jdermsci.2006.12.010.

    Article  PubMed  CAS  Google Scholar 

  25. A. B. Nair, S. R. Vaka, S. M. Sammeta, H. D. Kim, P. M. Friden, B. Chakraborty, and S. N. Murthy. Trans-ungual iontophoretic delivery of terbinafine. J. Pharm. Sci. (2009) in press. doi:10.1002/jps.21555.

  26. J. Hao, K. A. Smith, and S. K. Li. Iontophoretically enhanced ciclopirox delivery into and across human nail plate. J. Pharm. Sci. (2009) in press. doi:10.1002/jps.21664.

  27. S. K. Li, A. H. Ghanem, K. D. Peck, and W. I. Higuchi. Iontophoretic transport across a synthetic membrane and human epidermal membrane: a study of the effects of permeant charge. J. Pharm. Sci. 86:680–689 (1997). doi:10.1021/js960479m.

    Article  PubMed  CAS  Google Scholar 

  28. D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids. Res. 34:D668–D672 (2006). doi:10.1093/nar/gkj067.

    Article  PubMed  CAS  Google Scholar 

  29. S. M. Sims, W. I. Higuchi, V. Srinivasan, and K. D. Peck. Ionic partition coefficients and electroosmotic flow in cylindrical pores: comparison of the predictions of the Poisson–Boltzmann equation with experiment. J. Colloid Interface Sci. 155:210–220 (1993). doi:10.1006/jcis.1993.1027.

    Article  CAS  Google Scholar 

  30. P. C. Hiemenz, and R. Rajagopalan. The Electrical Double Layer and Double-Layer Interactions. In Principles of Colloid and Surface Chemistry. Marcel Dekker, New York, 1997, pp. 499–533.

    Google Scholar 

  31. R. Schmuhl, K. Keizer, A. van den Berg, J. E. ten Elshof, and D. H. A. Blank. Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength. J. Colloid Interface Sci. 273:331–338 (2004). doi:10.1016/j.jcis.2003.10.024.

    Article  PubMed  CAS  Google Scholar 

  32. T. Kuo, L. A. Sloan, J. V. Sweedler, and P. W. Bohn. Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and Debye length. Langmuir. 17:6298–6303 (2001). doi:10.1021/la010429j.

    Article  CAS  Google Scholar 

  33. W. M. Deen. Hindered transport of large molecules in liquid-filled pores. AlChE J. 33:1409–1425 (1987).

    CAS  Google Scholar 

  34. J. B. Phipps, and J. R. Gyory. Transdermal ion migration. Adv. Drug Deliv. Rev. 9:137–176 (1992). doi:10.1016/0169-409X(92)90022-I.

    Article  CAS  Google Scholar 

  35. J. R. Vinograd, and J. W. McBain. Diffusion of electrolytes and of the ions in their mixtures. J. Am. Chem. Soc. 63:2008–2015 (1941). doi:10.1021/ja01852a063.

    Article  CAS  Google Scholar 

  36. K. D. Peck, A. H. Ghanem, W. I. Higuchi, and V. Srinivasan. Improved stability of the human epidermal successive permeability experiments. Int. J. Pharm. 98:141–147 (1993). doi:10.1016/0378-5173(93)90050-P.

    Article  CAS  Google Scholar 

  37. W. H. M. Craane-van Hinsberg, L. Bax, N. H. M. Flinterman, J. Verhoef, H. E. Junginger, and H. E. Bodde. Iontophoresis of a model peptide across human skin in vitro: effects of iontophoresis, protocol, pH, and ionic strength on peptide flux and skin impedance. Pharm. Res. 11:1296–1300 (1994). doi:10.1023/A:1018994428375.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH Grant GM063559 and in part by a grant from Boehringer Ingelheim Cares Foundation for the thesis work of Kelly A. Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kevin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K.A., Hao, J. & Li, S.K. Effects of Ionic Strength on Passive and Iontophoretic Transport of Cationic Permeant Across Human Nail. Pharm Res 26, 1446–1455 (2009). https://doi.org/10.1007/s11095-009-9854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9854-x

KEY WORDS

Navigation