Pharmaceutical Research

, Volume 26, Issue 5, pp 1084–1092 | Cite as

Pulmonary Spray Dried Powders of Tobramycin Containing Sodium Stearate to Improve Aerosolization Efficiency

  • Chiara Parlati
  • Paolo ColomboEmail author
  • Francesca Buttini
  • Paul M. Young
  • Handoko Adi
  • Alaina J. Ammit
  • Daniela Traini
Research Paper



Tobramycin microparticulate powders containing the hydrophobic adjunct sodium stearate were studied for their use as pulmonary formulations in dry powder inhalers.


Spray-dried powders were characterized in terms of particle size distribution, morphology, crystallinity, drug dissolution rate, toxicity on epithelial lung cells and aerosol efficiency.


The presence of the sodium stearate had a direct influence on the aerosol performance of tobramycin spray-dried powders. Powders containing 1% w/w sodium stearate had fine particle fraction FPF of 84.3 ± 2.0% compared to 27.1 ± 1.9% for powders containing no adjunct. This was attributed to the accumulation of sodium stearate at the particle surface. Powders with higher sodium stearate concentrations (2% w/w) showed significantly lower FPF (66.4 ± 0.9%) and less accumulation of sodium stearate at the particle surface. This was attributed to the formation of adjunct micelles, which remained internalised in the particle structure due to their reduced tropism toward the drying drop surface and molecular mobility. Preliminary analysis of the toxicity effect of sodium stearate on A549 cell lines showed that the adjunct, in the concentration used, had no effect on cell viability over a 24-h period compared to particles of pure tobramycin.


Tobramycin pulmonary powders with low level of sodium stearate, presenting high respiration performances and no overt toxicity on lung cells, could be used to improve therapeutic outcomes of patient with Cystic Fibrosis (CF).


antibiotic dry powder inhaler spray drying pulmonary delivery NGI tobramycin 


  1. 1.
    L. Garcia-Contreras, and A.J. Hickey. Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy. Adv. Drug. D. Rev. 54:1491–1504 (2002). doi: 10.1016/S0169-409X(02)00159-X.CrossRefGoogle Scholar
  2. 2.
    M.E. Drobnic, P. Suñé, J.B. Montoro, A. Ferrer, and R. Orriols. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with pseudomonas aeruginosa. Ann. Pharmacother. 39:39–44 (2005). doi: 10.1345/aph.1E099.PubMedGoogle Scholar
  3. 3.
    H. Lode. Tobramycin: a review of therapeutic uses and dosing schedules. C. Ther. Res. 59:7 (1998).Google Scholar
  4. 4.
    V.B. Pai, and M.C. Nahata. Efficacy and safety of aerosolized tobramycin in cystic fibrosis. Ped Pneumology. 32:314–327 (2001).Google Scholar
  5. 5.
    B.W. Ramsey, M.S. Pepe, J.M. Quan, K.L. Otto, A.B. Montgomery, J. Williams-Warren, K.M. Vasiljev, D. Borowitz, C.M. Bowman, B.C. Marshall, S. Marshall, and A.L. Smith. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N. Engl. J. Med. 340:23–30 (1999). doi: 10.1056/NEJM199901073400104.PubMedCrossRefGoogle Scholar
  6. 6.
    G. Döring, S.P. Conway, H.G.M. Heijerman, M.E. Hodson, N. Hùiby, A. Smyth, and D.J. Touw. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur. Respir. J. 16:749–767 (2000). doi: 10.1034/j.1399-3003.2000.16d30.x.PubMedCrossRefGoogle Scholar
  7. 7.
    R.B. Moss. Administration of aerosolized antibiotics in cystic fibrosis patients. Chest. 120:107–113 (2001). doi: 10.1378/chest.120.3_suppl.107S.CrossRefGoogle Scholar
  8. 8.
    J. Eisenberg, M. Pepe, J. Williams-Warren, M. Vasiliev, A.B. Montgomery, A.L. Smith, and B.W. Ramsey. Systems fibrosis using jet and ultrasonic nebulizer concentration in patients with cystic. A comparison of peak sputum tobramycin. Chest. 111:955–962 (1997). doi: 10.1378/chest.111.4.955.PubMedCrossRefGoogle Scholar
  9. 9.
    D.J. Touw, A.J. Knox, and A. Smyth. Population pharmacokinetics of tobramycin administered thrice daily and once daily in children and adults with cystic fibrosis. J. Cyst. Fibros. 6:327–333 (2007). doi: 10.1016/j.jcf.2006.12.007.PubMedCrossRefGoogle Scholar
  10. 10.
    L. Vidal, A. Gafter-Gvili, S. Borok, A. Fraser, L. Leibovici, and M. Paul. Efficacy and safety of aminoglycoside monotherapy: systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 60:247–257 (2007). doi: 10.1093/jac/dkm193.PubMedCrossRefGoogle Scholar
  11. 11.
    S.M. Cheer, J. Waugh, and S. Noble. Inhaled Tobramycin (TOBI): a review of its use in the management of Pseudomonas aeruginosa infections in patients with cystic fibrosis. Adis. Drug Evaluation. 63(22):2501–2520 (2003).Google Scholar
  12. 12.
    M.P. Boyle. Challenge of cystic fibrosis care so many drugs, so little time: the future. Chest. 123:3–5 (2003). doi: 10.1378/chest.123.1.3.PubMedCrossRefGoogle Scholar
  13. 13.
    P.W. Campbell, and L. Saiman. Use of aerosolized antibiotics in patients with cystic fibrosis. Chest. 116:775–788 (1999). doi: 10.1378/chest.116.3.775.PubMedCrossRefGoogle Scholar
  14. 14.
    M.P. Timsina, G.P. Martin, C. Marriott, D. Ganderton, and M. Yianneskis. Drug delivery to the respiratory tract using dry powder inhalers. Int. J. Pharm. 101:1–130 (1994).CrossRefGoogle Scholar
  15. 15.
    I. Gonda. The ascent of pulmonary drug delivery. J. Pharm. Sci. 89:940–945 (2000). doi: 10.1002/1520-6017(200007)89:7<940::AID-JPS11>3.0.CO;2-B.PubMedCrossRefGoogle Scholar
  16. 16.
    D.E. Geller, M.W. Konstan, J. Smith, S.B. Noonberg, and C. Conrad. Novel tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics and safety. Pediatric. Pneumol. 42:307–333 (2007).Google Scholar
  17. 17.
    A.J. Hickey, and T.B. Martonen. Behavior of hygroscopic pharmaceutical aerosol and the influence of hydrophobic additives. Pharm. Res. 10(1):1–7 (1993). doi: 10.1023/A:1018952425107.PubMedCrossRefGoogle Scholar
  18. 18.
    R. Veinhard. Pharmaceutical particle engineering via spray drying. Pharm. Res. 25(5):999–1022 (2008). doi: 10.1007/s11095-007-9475-1.CrossRefGoogle Scholar
  19. 19.
    P.C. Seville, H.-Y. Li, and T.P. Learoyd. Spray-dried powders for pulmonary drug delivery. Crit. Rev. Ther. Drug Carrier Sys. 24(4):307–360 (2007).Google Scholar
  20. 20.
    G. Pilcer, T. Sebti, and K. Amighi. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm. Res. 23(5):931–940 (2006). doi: 10.1007/s11095-006-9789-4.PubMedCrossRefGoogle Scholar
  21. 21.
    G. Pilcer, F. Vanderbist, and K. Amighi. Preparation and characterization of spray-dried tobramycin powder containing nanoparticles for pulmonary delivery. Int. J. Pharm. 365:162–169 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    M.T. Newhouse, P.H. Hirst, S.P. Duddu, Y.H. Walter, T.E. Tarara, A.R. Clark, and J.G. Weers. Inhalation of a dry powder tobramycin pulmosphere formulation in healthy volunteers. Chest. 124:360–366 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Edge, A.M. Belu, U.J. Potter, D.F. Steele, P.M. Young, R. Price, and J.N. Staniforth. Chemical characterization of sodium starch glycolate particles. Int. J. Pharm. 240:67–78 (2002). doi: 10.1016/S0378-5173(02)00109-6.PubMedCrossRefGoogle Scholar
  24. 24.
    J. Carmichael, W.G. DeGraff, and A.F. Gazdar. Evaluation of tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res. 47(4):943–946 (1987).PubMedGoogle Scholar
  25. 25.
    T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63 (1983). doi: 10.1016/0022-1759(83)90303-4.PubMedCrossRefGoogle Scholar
  26. 26.
    D.O. Corrigan, O.I. Corrigan, and A.M. Healy. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipatropium bromide and salbuthamol sulphate/excipient spray dried mixtures for use in dry powder inhalers. Int. J. Pharm. 322:22–30 (2006). doi: 10.1016/j.ijpharm.2006.05.022.PubMedCrossRefGoogle Scholar
  27. 27.
    FDA. Dissolution Testing of Immediate Release Solid Oral Dosage Forms. FDA, Rockville, MD, 1997.Google Scholar
  28. 28.
    J.H. Widdicombe. Regulation of the depth and composition of airway surface liquid. J. Anatomy. 201(4):313–318 (2002). doi: 10.1046/j.1469-7580.2002.00098.x.CrossRefGoogle Scholar
  29. 29.
    T.J. Franz. Percutaneous absorptions. On the relevance of in vitro data. J. Investigative Dermatolog. 64:190–195 (1975). doi: 10.1111/1523-1747.ep12533356.CrossRefGoogle Scholar
  30. 30.
    R. Salama, S. Hoe, H.K. Chan, D. Traini, and P.M. Young. Preparation and characterisation of controlled release co-spray dried drug–polymer microparticles for inhalation 1: Influence of polymer concentration on physical and in vitro characteristics. Eu. J. Pharm. Biopharm. 69:486–495 (2008).CrossRefGoogle Scholar
  31. 31.
    H.Y. Li, and J. Birchall. Chitosan-modified dry powder formulations for pulmonary gene delivery. Pharm. Res. 23:941–950 (2006). doi: 10.1007/s11095-006-0027-x.PubMedCrossRefGoogle Scholar
  32. 32.
    D. Lechuga-Ballesteros, C. Charan, C. Stults, C.L. Stevenson, D.P. Miller, R. Vehring, V. Tep, and M.C. Kuo. Trileucine improves dispersibility, aerosol performance and stability of spray-dried powders for inhalation. J. Pharm. Sci. 97(1):287–302 (2008). doi: 10.1002/jps.21078.PubMedCrossRefGoogle Scholar
  33. 33.
    H.Y. Li, P.C. Seville, I.J. Williamson, and J.C. Birchall. The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. J. Gene Med. 7:343–353 (2005). doi: 10.1002/jgm.654.PubMedCrossRefGoogle Scholar
  34. 34.
    H.Y. Li, H. Neill, R. Innocent, P.C. Seville, I. Williamson, and J.C. Birchall. Enhanced dispersibility and deposition of spray-dried powders for pulmonary gene therapy. J. Drug Target. 11:425–432 (2003). doi: 10.1080/10611860410001659786.PubMedCrossRefGoogle Scholar
  35. 35.
    British Pharmacopoeia, 2008, Vol. 2 Sodium Stearate Monograph p. 1994, London, England.Google Scholar
  36. 36.
    British Pharmacopoeia, 2008, Tobramycin Monograph p. 2153, London, England.Google Scholar
  37. 37.
    H.A. Capelle, L.G. Britcher, and G.E. Morris. Sodium stearate adsorption onto titania pigment. J. Col. Int. Sci. 268:293–300 (2003).CrossRefGoogle Scholar
  38. 38.
    D. Myers. Surfaces, interfaces and colloids—principle and applications. Wiley-VCH, New York, 1999.CrossRefGoogle Scholar
  39. 39.
    A. Tabazadeh. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles. Atmos. Env. 39:5472–5480 (2005). doi: 10.1016/j.atmosenv.2005.05.045.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chiara Parlati
    • 1
  • Paolo Colombo
    • 1
    Email author
  • Francesca Buttini
    • 1
  • Paul M. Young
    • 2
  • Handoko Adi
    • 2
  • Alaina J. Ammit
    • 3
  • Daniela Traini
    • 2
  1. 1.Department of PharmacyUniversity of ParmaParmaItaly
  2. 2.Advanced Drug Delivery Group, Faculty of PharmacyUniversity of SydneySydneyAustralia
  3. 3.Respiratory Research Group, Faculty of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations