Skip to main content

Advertisement

Log in

A Plant-Derived Hydrolysable Tannin Inhibits CFTR Chloride Channel: A Potential Treatment of Diarrhea

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present study examined the effects and mechanisms of actions of penta-m-digalloyl-glucose (PDG), a hydrolysable tannin extracted from Chinese gallnut, on cystic fibrosis transmembrane conductance regulator protein (CFTR).

Materials and Methods

Fisher rat thyroid cells stably expressing human CFTR (FRT cells) and human intestinal T84 cells were used as cell models to investigate the effects of PDG on chloride secretion using short-circuit current analysis. The mechanisms by which PDG affected chloride secretion were also examined. Finally, in vivo antidiarrheal efficacy and effects of PDG on intestinal fluid absorption were evaluated in mouse closed-loop models.

Results

In FRT cells, apical chloride current induced by forskolin, CPT-cAMP and apigenin were reversibly inhibited by PDG (IC50 ∼ 10 µM) without effects on intracellular cAMP content and cell viability. Similarly, in T84 cells, PDG effectively inhibited chloride secretion induced by forskolin and cholera toxin. However, it had no effect on calcium-induced chloride secretion. In mice, a single intraluminal injection of PDG (0.6 mg/kg) reduced cholera toxin-induced intestinal fluid secretion by 75% with no effect on intestinal fluid absorption.

Conclusions

PDG represents a new class of CFTR inhibitors. Further development of this class of compounds may provide a new therapeutic intervention for diarrhea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CFTR:

cystic fibrosis transmembrane conductance regulator

CFTRinh-172:

3-[(3-trifluoromethyl) phenyl]-5-[(4-carboxyphenyl) methylene]-2-thioxo-4-thiazolidinone

DMSO:

dimethyl sulfoxide

CPT-cAMP:

8-cholorophenyl-thio-cAMP

FRT:

Fisher rat thyroid

MTT:

3-(4, 5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

PBS:

phosphate-buffered saline

PDG:

penta- m- digalloyl- glucose

References

  1. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003;81:197–204.

    PubMed  Google Scholar 

  2. Huilan S, Zhen LG, Mathan MM, Mathew MM, Olarte J, Espejo R, et al. Etiology of acute diarrhoea among children in developing countries: a multicentre study in five countries. Bull World Health Organ. 1991;69:549–55.

    CAS  PubMed  Google Scholar 

  3. Thiagarajah JR, Verkman AS. New drug targets for cholera therapy. Trends Pharmacol Sci. 2005;26:172–5.

    Article  CAS  PubMed  Google Scholar 

  4. Grubb BR, Boucher RC. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev. 1999;79:S193–214.

    CAS  PubMed  Google Scholar 

  5. Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol. 2000;62:535–72.

    Article  CAS  PubMed  Google Scholar 

  6. Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov. 2009;8:153–71.

    Article  CAS  PubMed  Google Scholar 

  7. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest. 2002;110:1651–8.

    CAS  PubMed  Google Scholar 

  8. Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol. 2004;124:125–37.

    Article  CAS  PubMed  Google Scholar 

  9. Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V. A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J Pharmacol Exp Ther. 2008;324:798–805.

    Article  CAS  PubMed  Google Scholar 

  10. Serrano J, Puupponen-Pimia R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res. 2009;53 Suppl 2:S310–29.

    PubMed  Google Scholar 

  11. Andrade Jr RG, Dalvi LT, Silva Jr JM, Lopes GK, Alonso A, Hermes-Lima M. The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Arch Biochem Biophys. 2005;437:1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chenand SC, Chung KT. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food Chem Toxicol. 2000;38:1–5.

    Google Scholar 

  13. Andrade Jr RG, Ginani JS, Lopes GK, Dutra F, Alonso A, Hermes-Lima M. Tannic acid inhibits in vitro iron-dependent free radical formation. Biochimie. 2006;88:1287–96.

    Article  CAS  PubMed  Google Scholar 

  14. Murakami S, Muramatsu M, Otomo S. Inhibitory effect of tannic acid on gastric H+, K(+)-ATPase. J Nat Prod. 1992;55:513–6.

    Article  CAS  PubMed  Google Scholar 

  15. Schuier M, Sies H, Illek B, Fischer H. Cocoa-related flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. J Nutr. 2005;135:2320–5.

    CAS  PubMed  Google Scholar 

  16. Fischer H, Machen TE, Widdicombe JH, Carlson TJ, King SR, Chow JW, et al. A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells. J Ethnopharmacol. 2004;93:351–7.

    Article  PubMed  Google Scholar 

  17. Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol. 2001;281:C1734–42.

    CAS  PubMed  Google Scholar 

  18. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 2002;82:245–89.

    CAS  PubMed  Google Scholar 

  19. Rufo PA, Lin PW, Andrade A, Jiang L, Rameh L, Flexner C, et al. Diarrhea-associated HIV-1 APIs potentiate muscarinic activation of Cl- secretion by T84 cells via prolongation of cytosolic Ca2+ signaling. Am J Physiol Cell Physiol. 2004;286:C998–1008.

    Article  CAS  PubMed  Google Scholar 

  20. Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK, Estes MK. NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. Am J Physiol. 1999;277:G431–44.

    CAS  PubMed  Google Scholar 

  21. Greger R. Role of CFTR in the colon. Annu Rev Physiol. 2000;62:467–91.

    Article  CAS  PubMed  Google Scholar 

  22. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: a review. Crit Rev Food Sci Nutr. 1998;38:421–64.

    Article  CAS  PubMed  Google Scholar 

  23. Gali HU, Perchellet EM, Klish DS, Johnson JM, Perchellet JP. Hydrolyzable tannins: potent inhibitors of hydroperoxide production and tumor promotion in mouse skin treated with 12-O-tetradecanoylphorbol-13-acetate in vivo. Int J Cancer. 1992;51:425–32.

    Article  CAS  PubMed  Google Scholar 

  24. Buzzini P, Arapitsas P, Goretti M, Branda E, Turchetti B, Pinelli P, et al. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem. 2008;8:1179–87.

    Article  CAS  PubMed  Google Scholar 

  25. Gabriel SE, Davenport SE, Steagall RJ, Vimal V, Carlson T, Rozhon EJ. A novel plant-derived inhibitor of cAMP-mediated fluid and chloride secretion. Am J Physiol. 1999;276:G58–63.

    CAS  PubMed  Google Scholar 

  26. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem. 2000;275:6047–50.

    Article  CAS  PubMed  Google Scholar 

  27. Flach CF, Lange S, Jennische E, Lonnroth I. Cholera toxin induces expression of ion channels and carriers in rat small intestinal mucosa. FEBS Lett. 2004;561:122–6.

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease. Physiol Rev. 1998;78:1165–91.

    CAS  PubMed  Google Scholar 

  29. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:1300–10.

    Article  CAS  PubMed  Google Scholar 

  30. Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides. Chem Biol. 2008;15:718–28.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez-Augustin O, Romero-Calvo I, Suarez MD, Zarzuelo A, de Medina FS. Molecular bases of impaired water and ion movements in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15:114–27.

    Article  PubMed  Google Scholar 

  32. Dobbins JW, Laurenson JP, Forrest Jr JN. Adenosine and adenosine analogues stimulate adenosine cyclic 3′, 5′-monophosphate-dependent chloride secretion in the mammalian ileum. J Clin Invest. 1984;74:929–35.

    Article  CAS  PubMed  Google Scholar 

  33. Lohi H, Makela S, Pulkkinen K, Hoglund P, Karjalainen-Lindsberg ML, Puolakkainen P, et al. Upregulation of CFTR expression but not SLC26A3 and SLC9A3 in ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2002;283:G567–75.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund (grant RMU5180029 to VC), the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand National Science and Technology Development Agency (Grant 3-2548) and Center for Environmental Health, Toxicology and Management of Chemicals, Commission for Higher Education, Ministry of Education, Thailand.

We thank Prof. Alan S. Verkman (University of California, San Francisco, CA, USA) for providing the FRT cells and highly appreciate Prof. Prapon Wilairat (Department of Biochemistry, Mahidol University) for his valuable comments and corrections of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chatchai Muanprasat or Varanuj Chatsudthipong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongsamitkul, N., Sirianant, L., Muanprasat, C. et al. A Plant-Derived Hydrolysable Tannin Inhibits CFTR Chloride Channel: A Potential Treatment of Diarrhea. Pharm Res 27, 490–497 (2010). https://doi.org/10.1007/s11095-009-0040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0040-y

Key words

Navigation