Skip to main content

Advertisement

Log in

Neuropilin-1 Targeting Photosensitization-Induced Early Stages of Thrombosis via Tissue Factor Release

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This article characterizes the vascular effects following vascular-targeted photodynamic therapy with a photosensitizer which actively targets endothelial cells.

Methods

This strategy was considered by coupling a chlorin to a heptapeptide targeting neuropilin-1 in human malignant glioma-bearing nude mice. A laser Doppler microvascular perfusion monitor was used to monitor microvascular blood perfusion in tumor tissue. Endothelial cells’ ultra structural integrity was observed by transmission electron microscopy. The consequences of photosensitization on tumor vessels, tissue factor expression, fibrinogen consumption, and thrombogenic effects were studied by immunohistochemical staining.

Results

Treatment of glioma-bearing mice with the conjugate showed a statistically significant tumor growth delay. Vascular effect was characterized by a decrease in tumor tissue blood flow at about 50% baseline during treatment not related to variations in temperature. This vascular shutdown was mediated by tumor blood vessels’ congestion. A pro-thrombotic behavior of targeted endothelial cells in the absence of ultra structural changes led to the induction of tissue factor expression from the earliest times post-treatment. Expression of tissue factor-initiated thrombi formation was also related to an increase in fibrinogen consumption.

Conclusion

Using a peptide-conjugated photosensitizer targeting neuropilin-1, induction of tissue factor expression immediately post-treatment, led to the establishment of thrombogenic effects within the vessel lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ahx:

6-aminohexanoic acid

a.i.:

arbitrary intensity

ATWLPPR:

H-Ala-Thr-Trp-Leu-Pro-Pro-Arg-OH

asHTF:

alternatively spiced human tissue factor

a.u.:

arbitrary units

BPD-MA:

benzoporphyrin derivative monoacid ring

BSA:

bovine serum albumine

DLI:

drug-light interval

FITC:

fluoresceine iso thio cyanate

HES:

hematoxylin, eosin and safran

HRP:

streptavidin-horseradish peroxidase

IL-6:

interleukin-6

i.v.:

intravenous

NRP-1:

neuropilin-1

PBS:

phosphate-buffered saline

PDT:

photodynamic therapy

PEG:

polyethylene glycol

PO2 :

oxygen pressure

ROS:

reactive oxygen species

RSM:

response surface methodology

s.d.:

standard deviation

TEM:

transmission electron microscopy

TEM buffer:

Tris EDTA molybdate buffer

TF:

tissue factor

TGD:

tumor growth delay

TNF-α:

tumor necrosis factor alpha

TPC:

5-(4-carboxyphenyl)-10,15,20-triphenylchlorin

V:

volume

VEGF:

vascular endothelial growth factor

VTP:

vascular targeted photodynamic therapy

REFERENCES

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    Article  PubMed  CAS  Google Scholar 

  3. Ichikawa K, Hikita T, Maeda N, Yonezawa S, Takeuchi Y, Asai T, et al. Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels. Biochim Biophys Acta. 2005;1669:69–74.

    Article  PubMed  CAS  Google Scholar 

  4. Chen B, Pogue BW, Luna JM, Hardman RL, Hoopes PJ, Hasan T. Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clin Cancer Res. 2006;12:917–23.

    Article  PubMed  CAS  Google Scholar 

  5. Fingar VH, Taber SW, Haydon PS, Harrison LT, Kempf SJ, Wieman TJ. Vascular damage after photodynamic therapy of solid tumors: a view and comparison of effect in pre-clinical and clinical models at the University of Louisville. In Vivo. 2000;14:93–100.

    PubMed  CAS  Google Scholar 

  6. Huang Z, Chen Q, Luck D, Beckers J, Wilson BC, Trncic N, et al. Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers Surg Med. 2005;36:390–7.

    Article  PubMed  CAS  Google Scholar 

  7. McMahon KS, Wieman TJ, Moore PH, Fingar VH. Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res. 1994;54:5374–9.

    PubMed  CAS  Google Scholar 

  8. Wieman TJ, Mang TS, Fingar VH, Hill TG, Reed MW, Corey TS, et al. Effect of photodynamic therapy on blood flow in normal and tumor vessels. Surgery. 1988;104:512–7.

    PubMed  CAS  Google Scholar 

  9. Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB. The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res. 1992;52:4914–21.

    PubMed  CAS  Google Scholar 

  10. Fingar VH. Vascular effects of photodynamic therapy. J Clin Laser Med Surg. 1996;14:323–8.

    PubMed  CAS  Google Scholar 

  11. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55:145–57.

    Article  PubMed  CAS  Google Scholar 

  12. Kurohane K, Tominaga A, Sato K, North JR, Namba Y, Oku N. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett. 2001;167:49–56.

    Article  PubMed  CAS  Google Scholar 

  13. Chen B, Pogue BW, Hoopes PJ, Hasan T. Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr. 2006;16:279–305.

    PubMed  Google Scholar 

  14. Starzec A, Ladam P, Vassy R, Badache S, Bouchemal N, Navaza A, et al. Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF(165) binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex. Peptides. 2007;28:2397–402.

    Article  PubMed  CAS  Google Scholar 

  15. Tirand L, Frochot C, Vanderesse R, Thomas N, Trinquet E, Pinel S, et al. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Control Release. 2006;111:153–64.

    Article  PubMed  CAS  Google Scholar 

  16. Thomas N, Bechet D, Becuwe P, Tirand L, Vanderesse R, Frochot C, et al. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. J Photochem Photobiol B. 2009;96:101–8.

  17. Thomas N, Tirand L, Chatelut E, Plenat F, Frochot C, Dodeller M, et al. Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice. Photochem Photobiol Sci. 2008;7:433–41.

    Article  PubMed  CAS  Google Scholar 

  18. Tirand L, Bastogne T, Bechet D, Linder M, Thomas N, Frochot C, et al. Response surface methodology: an extensive potential to optimize in vivo photodynamic therapy conditions. Int J Radiat Oncol Biol Phys. 2009;75:244–52.

    Google Scholar 

  19. Tirand L, Thomas N, Dodeller M, Dumas D, Frochot C, Maunit B, et al. Metabolic profile of a peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1: an in vivo and in vitro study. Drug Metab Dispos. 2007;35:806–13.

    Article  PubMed  CAS  Google Scholar 

  20. Pinel S, Barberi-Heyob M, Cohen-Jonathan E, Merlin JL, Delmas C, Plenat F, et al. Erythropoietin-induced reduction of hypoxia before and during fractionated irradiation contributes to improvement of radioresponse in human glioma xenografts. Int J Radiat Oncol Biol Phys. 2004;59:250–9.

    PubMed  CAS  Google Scholar 

  21. Chergui F, Chretien AS, Bouali S, Ramacci C, Rouyer M, Bastogne T, et al. Validation of a phosphoprotein array assay for characterization of human tyrosine kinase receptor downstream signaling in breast cancer. Clin Chem. 2009;55:1327–36.

    Article  PubMed  CAS  Google Scholar 

  22. Yu G, Durduran T, Zhou C, Wang HW, Putt ME, Saunders HM, et al. Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy. Clin Cancer Res. 2005;11:3543–52.

    Article  PubMed  CAS  Google Scholar 

  23. Kelleher DK, Thews O, Scherz A, Salomon Y, Vaupel P. Perfusion, oxygenation status and growth of experimental tumors upon photodynamic therapy with Pd-bacteriopheophorbide. Int J Oncol. 2004;24:1505–11.

    PubMed  CAS  Google Scholar 

  24. Dudar TE, Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res. 1984;44:605–12.

    PubMed  CAS  Google Scholar 

  25. Mackman N. Regulation of the tissue factor gene. Faseb J. 1995;9:883–9.

    PubMed  CAS  Google Scholar 

  26. Archipoff G, Beretz A, Freyssinet JM, Klein-Soyer C, Brisson C, Cazenave JP. Heterogeneous regulation of constitutive thrombomodulin or inducible tissue-factor activities on the surface of human saphenous-vein endothelial cells in culture following stimulation by interleukin-1, tumour necrosis factor, thrombin or phorbol ester. Biochem J. 1991;273(Pt 3):679–84.

    PubMed  CAS  Google Scholar 

  27. Siemann DW, Chaplin DJ, Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer. 2004;100:2491–9.

    Article  PubMed  CAS  Google Scholar 

  28. Brekken RA, Li C, Kumar S. Strategies for vascular targeting in tumors. Int J Cancer. 2002;100:123–30.

    Article  PubMed  CAS  Google Scholar 

  29. Dolmans DE, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res. 2002;62:2151–6.

    PubMed  CAS  Google Scholar 

  30. Eichhorn ME, Strieth S, Dellian M. Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resist Updat. 2004;7:125–38.

    Article  PubMed  CAS  Google Scholar 

  31. Thorpe PE, Chaplin DJ, Blakey DC. The first international conference on vascular targeting: meeting overview. Cancer Res. 2003;63:1144–7.

    PubMed  CAS  Google Scholar 

  32. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–9.

    Article  PubMed  CAS  Google Scholar 

  33. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002;515:33–48.

    PubMed  CAS  Google Scholar 

  34. Leach RM, Hill HS, Snetkov VA, Ward JP. Hypoxia, energy state and pulmonary vasomotor tone. Respir Physiol Neurobiol. 2002;132:55–67.

    Article  PubMed  CAS  Google Scholar 

  35. Lin SC, Lin CP, Feld JR, Duker JS, Puliafito CA. The photodynamic occlusion of choroidal vessels using benzoporphyrin derivative. Curr Eye Res. 1994;13:513–22.

    Article  PubMed  CAS  Google Scholar 

  36. Fingar VH, Kik PK, Haydon PS, Cerrito PB, Tseng M, Abang E, et al. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer. 1999;79:1702–8.

    Article  PubMed  CAS  Google Scholar 

  37. Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med. 1996;47:315–31.

    Article  PubMed  CAS  Google Scholar 

  38. Fungaloi P, Waterman P, Nigri G, Statius-van Eps R, Sluiter W, van Urk H, et al. Photochemically modulated endothelial cell thrombogenicity via the thrombomodulin-tissue factor pathways. Photochem Photobiol. 2003;78:475–80.

    Article  PubMed  CAS  Google Scholar 

  39. Wada H, Wakita Y, Shiku H. Tissue factor expression in endothelial cells in health and disease. Blood Coagul Fibrinolysis. 1995;6 Suppl 1:S26–31.

    Article  PubMed  CAS  Google Scholar 

  40. Zillmann A, Luther T, Muller I, Kotzsch M, Spannagl M, Kauke T, et al. Platelet-associated tissue factor contributes to the collagen-triggered activation of blood coagulation. Biochem Biophys Res Commun. 2001;281:603–9.

    Article  PubMed  CAS  Google Scholar 

  41. Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood. 1997;89:2429–42.

    PubMed  CAS  Google Scholar 

  42. Fungaloi P, Statius van Eps R, Wu YP, Blankensteijn J, de Groot P, van Urk H, et al. Platelet adhesion to photodynamic therapy-treated extracellular matrix proteins. Photochem Photobiol. 2002;75:412–7.

    Article  PubMed  CAS  Google Scholar 

  43. Liu HM, Wang DL, Liu CY. Interactions between fibrin, collagen and endothelial cells in angiogenesis. Adv Exp Med Biol. 1990;281:319–31.

    PubMed  CAS  Google Scholar 

  44. Daly ME, Makris A, Reed M, Lewis CE. Hemostatic regulators of tumor angiogenesis: a source of antiangiogenic agents for cancer treatment? J Natl Cancer Inst. 2003;95:1660–73.

    PubMed  CAS  Google Scholar 

  45. Evans S, Matthews W, Perry R, Fraker D, Norton J, Pass HI. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J Natl Cancer Inst. 1990;82:34–9.

    Article  PubMed  CAS  Google Scholar 

  46. Seshadri M, Bellnier DA. The vascular disrupting agent 5, 6-dimethylxanthenone-4-acetic acid improves the antitumor efficacy and shortens treatment time associated with Photochlor-sensitized photodynamic therapy in vivo. Photochem Photobiol. 2009;85:50–6.

    Article  PubMed  CAS  Google Scholar 

  47. Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res. 2005;96:1233–9.

    Article  PubMed  CAS  Google Scholar 

  48. Korbelik M, Cecic I. Mechanism of tumor destruction by photodynamic therapy. In: Nalwa HS, editor. Handbook of photocochemistry and photobiology, vol. 4. Stevenson Ranch: American Scientific Publishers; 2003. p. 39–77.

    Google Scholar 

  49. Karrer S, Bosserhoff AK, Weiderer P, Landthaler M, Szeimies RM. Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts. Br J Dermatol. 2004;151:776–83.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank Denise Thiébaut, Marie Rouyer, and Carole Ramacci for their excellent technical assistance. We also thank Sophie Pinel and Anne-Sophie Chrétien for their collaboration. This work was supported by the research funds of the French “Ligue Nationale Contre le Cancer, Comités Lorrains.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Barberi-Heyob.

Additional information

Loraine Tirand and Béatrice Faivre contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechet, D., Tirand, L., Faivre, B. et al. Neuropilin-1 Targeting Photosensitization-Induced Early Stages of Thrombosis via Tissue Factor Release. Pharm Res 27, 468–479 (2010). https://doi.org/10.1007/s11095-009-0035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0035-8

KEY WORDS

Navigation