Skip to main content

Advertisement

Log in

Hepatic Disposition of Ximelagatran and Its Metabolites in Pig; Prediction of the Impact of Membrane Transporters Through a Simple Disposition Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The double prodrug, ximelagatran, is bioconverted, via the intermediates ethylmelagatran and N-hydroxymelagatran, to the direct thrombin inhibitor, melagatran. The primary aim of this study was to investigate the hepatic metabolism and disposition of ximelagatran and the intermediates in pig. A secondary aim was to explore a simple in vitro methodology for quantitative investigations of the impact of membrane transporters on the disposition of metabolized drugs.

Methods

Porcine S1 (supernatant fraction obtained by centrifuging at 1,000 g for 10 min) liver fractions and hepatocytes were incubated in the absence and presence of known membrane transporter inhibitors. The in vitro kinetics and disposition were determined by simultaneously fitting the disappearance of ximelagatran and the appearance of the metabolites.

Results

In S1 liver fractions, the metabolism was significantly inhibited by co-incubation of verapamil or ketoconazole, but not by erythromycin, quinine or quinidine. The disposition of ximelagatran and the intermediate metabolites in hepatocytes were influenced, to various degrees, by carrier-mediated transport processes.

Conclusion

This work demonstrates that it is possible to obtain profound information on the general mechanisms that are important in the drug liver disposition using the combination of common in vitro systems and the simple disposition model proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACTB:

β actin

BCRP:

breast cancer resistance protein

Cu :

unbound concentration

CYP:

cytochrome P450

ETM:

ethylmelagatran

fu :

fraction unbound

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HBSS:

Hank’s buffer salt solution

HPRT:

hypoxanthine phosphoribosyltransferase

HSB:

Hepatocyte suspension buffer

Km :

Michaelis constant

MEL:

melagatran

MRP2:

multi-drug resistance protein 2

NADH:

reduced β-nicotinamide adenine dinucleotide

NADPH:

reduced β-nicotinamide adenine dinucleotide phosphate

OHM:

N-hydroxymelagatran

P-gp:

P-glycoprotein

S1:

supernatant fraction obtained by centrifuging at 1,000 g for 10 min

Vmax :

theoretical maximum reaction rate

XIM:

ximelagatran

REFERENCES

  1. Eriksson BI, Bergqvist D, Kalebo P, Dahl OE, Lindbratt S, Bylock A, et al. Ximelagatran and melagatran compared with dalteparin for prevention of venous thromboembolism after total hip or knee replacement: the METHRO II randomised trial. Lancet. 2002;360:1441–7.

    Article  CAS  PubMed  Google Scholar 

  2. Eriksson H, Wahlander K, Gustafsson D, Welin LT, Frison L, Schulman S. A randomized, controlled, dose-guiding study of the oral direct thrombin inhibitor ximelagatran compared with standard therapy for the treatment of acute deep vein thrombosis: THRIVE I. J Thromb Haemost. 2003;1:41–7.

    Article  CAS  PubMed  Google Scholar 

  3. AstraZeneca. AstraZeneca decides to withdraw Exanta™. 2006. http://www.astrazeneca.com/pressrelease/5217.aspx.

  4. Scala S, Akhmed N, Rao US, Paull K, Lan LB, Dickstein B, et al. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol. 1997;51:1024–33.

    CAS  PubMed  Google Scholar 

  5. Gustafsson D, Nystrom J, Carlsson S, Bredberg U, Eriksson U, Gyzander E, et al. The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. Thromb Res. 2001;101:171–81.

    Article  CAS  PubMed  Google Scholar 

  6. Eriksson UG, Bredberg U, Hoffmann KJ, Thuresson A, Gabrielsson M, Ericsson H, et al. Absorption, distribution, metabolism, and excretion of ximelagatran, an oral direct thrombin inhibitor, in rats, dogs, and humans. Drug Metab Dispos. 2003;31:294–305.

    Article  CAS  PubMed  Google Scholar 

  7. Sjodin E, Fritsch H, Eriksson U, Logren U, Nordgren A, Forsell P, et al. Intestinal and hepatobiliary transport of ximelagatran and its metabolites in pigs. Drug Metab Dispos. 2008;36:1519–28.

    Article  PubMed  Google Scholar 

  8. Clement B, Lopian K. Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Metab Dispos. 2003;31:645–51.

    Article  CAS  PubMed  Google Scholar 

  9. Andersson S, Hofmann Y, Nordling A, Li XQ, Nivelius S, Andersson TB, et al. Characterization and partial purification of the rat and human enzyme systems active in the reduction of N-hydroxymelagatran and benzamidoxime. Drug Metab Dispos. 2005;33:570–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bredberg E, Andersson TB, Frison L, Thuresson A, Johansson S, Eriksson-Lepkowska M, et al. Ximelagatran, an oral direct thrombin inhibitor, has a low potential for cytochrome P450-mediated drug-drug interactions. Clin Pharmacokinet. 2003;42:765–77.

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson UG, Dorani H, Karlsson J, Fritsch H, Hoffmann KJ, Olsson L, et al. Influence of erythromycin on the pharmacokinetics of ximelagatran may involve inhibition of P-glycoprotein-mediated excretion. Drug Metab Dispos. 2006;34:775–82.

    Article  CAS  PubMed  Google Scholar 

  12. Sjogren E, Lennernas H, Andersson TB, Grasjo J, Bredberg U. The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations. Drug Metab Dispos. 2009;37:47–58.

    Article  PubMed  Google Scholar 

  13. Reese JA, Byard JL. Isolation and culture of adult hepatocytes from liver biopsies. in vitro. 1981;17:935–40.

    Article  CAS  PubMed  Google Scholar 

  14. Schrickx J. ABC-transporters in the pig, Veterinary Pharmacology, Pharmacy and Toxicology. Utrecht: Universiteit Utrecht; 2006.

    Google Scholar 

  15. Arvidsson B, Allard E, Sjogren E, Lennernas H, Sjoberg PJ, Bergquist J. Online capillary solid phase extraction and liquid chromatographic separation with quantitative tandem mass spectrometric detection (SPE-LC-MS/MS) of ximelagatran and its metabolites in a complex matrix. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:291–7.

    Article  CAS  PubMed  Google Scholar 

  16. Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos. 2005;33:1304–11.

    Article  CAS  PubMed  Google Scholar 

  17. Bayliss MK, Bell JA, Jenner WN, Park GR, Wilson K. Utility of hepatocytes to model species differences in the metabolism of loxtidine and to predict pharmacokinetic parameters in rat, dog and man. Xenobiotica. 1999;29:253–68.

    Article  CAS  PubMed  Google Scholar 

  18. Reinoso RF, Telfer BA, Brennan BS, Rowland M. Uptake of teicoplanin by isolated rat hepatocytes: comparison with in vivo hepatic distribution. Drug Metab Dispos. 2001;29:453–9.

    CAS  PubMed  Google Scholar 

  19. Uhal BD, Roehrig KL. Effect of dietary state on hepatocyte size. Biosci Rep. 1982;2:1003–7.

    Article  CAS  PubMed  Google Scholar 

  20. Vom Dahl S, Hallbrucker C, Lang F, Gerok W, Haussinger D. Regulation of liver cell volume and proteolysis by glucagon and insulin. Biochem J. 1991;278(Pt 3):771–7.

    CAS  PubMed  Google Scholar 

  21. Hallifax D, Houston JB. Uptake and intracellular binding of lipophilic amine drugs by isolated rat hepatocytes and implications for prediction of in vivo metabolic clearance. Drug Metab Dispos. 2006;34:1829–36.

    Article  CAS  PubMed  Google Scholar 

  22. Polsky-Fisher SL, Cao H, Lu P, Gibson CR. Effect of cytochromes P450 chemical inhibitors and monoclonal antibodies on human liver microsomal esterase activity. Drug Metab Dispos. 2006;34:1361–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kenne K, Skanberg I, Glinghammar B, Berson A, Pessayre D, Flinois JP, et al. Prediction of drug-induced liver injury in humans by using in vitro methods: the case of ximelagatran. Toxicol in vitro. 2008;22:730–46.

    Article  CAS  PubMed  Google Scholar 

  24. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299:620–8.

    CAS  PubMed  Google Scholar 

  25. Seithel A, Eberl S, Singer K, Auge D, Heinkele G, Wolf NB, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos. 2007;35:779–86.

    Article  CAS  PubMed  Google Scholar 

  26. Lam JL, Okochi H, Huang Y, Benet LZ. In vitro and in vivo correlation of hepatic transporter effects on erythromycin metabolism: characterizing the importance of transporter-enzyme interplay. Drug Metab Dispos. 2006;34:1336–44.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos. 2005;33:619–22.

    Article  CAS  PubMed  Google Scholar 

  28. Terashi K, Oka M, Soda H, Fukuda M, Kawabata S, Nakatomi K, et al. Interactions of ofloxacin and erythromycin with the multidrug resistance protein (MRP) in MRP-overexpressing human leukemia cells. Antimicrob Agents Chemother. 2000;44:1697–700.

    Article  CAS  PubMed  Google Scholar 

  29. Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, et al. Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res. 2002;19:147–53.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Schaner ME, Giacomini KM. Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998;286:354–61.

    CAS  PubMed  Google Scholar 

  31. van der Sandt IC, Blom-Roosemalen MC, de Boer AG, Breimer DD. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur J Pharm Sci. 2000;11:207–14.

    Article  PubMed  Google Scholar 

  32. Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004;311:139–46.

    Article  CAS  PubMed  Google Scholar 

  33. Bow DA, Perry JL, Miller DS, Pritchard JB, Brouwer KL. Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos. 2008;36:198–202.

    Article  CAS  PubMed  Google Scholar 

  34. Gratzl R, Lassacher R, Majcen A, Graf J. Redistribution of canalicular cell membrane enzyme in hepatocytes following their isolation and during early cell culture. Hepatology. 1997;25:502–4.

    Article  CAS  PubMed  Google Scholar 

  35. Gautam A, Ng OC, Strazzabosco M, Boyer JL. Quantitative assessment of canalicular bile formation in isolated hepatocyte couplets using microscopic optical planimetry. J Clin Invest. 1989;83:565–73.

    Article  CAS  PubMed  Google Scholar 

  36. Jones HM, Hallifax D, Houston JB. Quantitative prediction of the in vivo inhibition of diazepam metabolism by omeprazole using rat liver microsomes and hepatocytes. Drug Metab Dispos. 2004;32:572–80.

    Article  CAS  PubMed  Google Scholar 

  37. Austin RP, Barton P, Mohmed S, Riley RJ. The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metab Dispos. 2005;33:419–25.

    Article  CAS  PubMed  Google Scholar 

  38. Kilford PJ, Gertz M, Houston JB, Galetin A. Hepatocellular binding of drugs: correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos. 2008;36:1194–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lu C, Li P, Gallegos R, Uttamsingh V, Xia CQ, Miwa GT, et al. Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes. Drug Metab Dispos. 2006;34:1600–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by AstraZeneca R&D Mölndal, Mölndal, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lennernäs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjögren, E., Bredberg, U., Allard, E. et al. Hepatic Disposition of Ximelagatran and Its Metabolites in Pig; Prediction of the Impact of Membrane Transporters Through a Simple Disposition Model. Pharm Res 27, 597–607 (2010). https://doi.org/10.1007/s11095-009-0016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0016-y

KEY WORDS

Navigation