Skip to main content

Advertisement

Log in

Implications of Global and Local Mobility in Amorphous Sucrose and Trehalose as Determined by Differential Scanning Calorimetry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the local and global mobility in amorphous sucrose and trehalose and their potential implications on physical stability.

Methods

Amorphous sucrose was prepared by lyophilization while amorphous trehalose was prepared by dehydration of trehalose dihydrate. The variation in the effective activation energy of α-relaxation through glass transition has been determined by applying an isoconversional method. β-Relaxations were detected as shallow peaks, at temperatures below the glass transition temperature, caused by annealing glassy samples at different temperatures and subsequently heating at different rates in a differential scanning calorimeter. The effect of heating rate on the β-relaxation peak temperature formed the basis for the calculation of the activation energy.

Results

α-Relaxations in glassy trehalose were characterized by larger activation energy barrier compared to sucrose, attributable to a more compact molecular structure of trehalose. The effect of temperature on viscous flow was greater in trehalose which can have implications on lyophile collapse. The size of the cooperatively rearranging regions was about the same for sucrose and trehalose suggesting similar dynamic heterogeneity at their respective glass transition temperatures. The activation energy of β-relaxations increased with annealing temperature due to increasing cooperative motions and the increase was larger in sucrose. The temperature at which β-relaxation was detected for a given annealing time was much less in sucrose implying that progression of local motions to cooperative motions occurred at lower temperatures in sucrose.

Conclusions

Trehalose, having a lower free volume in the glassy state due to a more tightly packed molecular structure, is characterized by larger activation energies of α-relaxation and experiences a greater effect of temperature on the reduction in the activation energy barrier for viscous flow. The pronounced increase in cooperative motions in sucrose upon annealing at temperatures below (T g −50) suggest that even a small excursion in temperature could result in a significant increase in mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. W. Pouton. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29:278–287 (2006). doi:10.1016/j.ejps.2006.04.016.

    Article  PubMed  CAS  Google Scholar 

  2. W. Wang. Instability, stabilization and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129–188 (1999). doi:10.1016/S0378-5173(99)00152-0.

    Article  PubMed  CAS  Google Scholar 

  3. L. Yu. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48:27–42 (2001). doi:10.1016/S0169-409X(01)00098-9.

    Article  PubMed  CAS  Google Scholar 

  4. B. C. Hancock, and G. Zografi. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86:1–12 (1997). doi:10.1021/js9601896.

    Article  PubMed  CAS  Google Scholar 

  5. D. Q. M. Craig, P. G. Royall, V. L. Kett, and M. L. Hopton. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze-dried systems. Int. J. Pharm. 179:179–207 (1999). doi:10.1016/S0378-5173(98)00338-X.

    Article  PubMed  CAS  Google Scholar 

  6. L. Kreilgaard, S. Frokjaer, J. M. Flink, T. W. Randolph, and J. F. Carpenter. Effects of additives on the stability of Humicola lanuginosa lipase during freeze-drying and storage in the dried solid. J. Pharm. Sci. 88:281–290 (1999). doi:10.1021/js980399d.

    Article  PubMed  CAS  Google Scholar 

  7. J. M. E. Sarciaux, and M. Hageman. Effects of bovine somatotropin (rbSt) concentration at different moisture levels on the physical stability of sucrose in freeze-dried rbSt/sucrose mixtures. J. Pharm. Sci. 86:365–371 (1997). doi:10.1021/js960217k.

    Article  PubMed  CAS  Google Scholar 

  8. K. Izutsu, S. Yoshioka, and S. Kojima. Physical stability and protein stability of freeze-dried cakes during storage at elevated temperatures. Pharm. Res. 11:995–999 (1994). doi:10.1023/A:1018931319772.

    Article  PubMed  CAS  Google Scholar 

  9. X. M. Zeng, G. P. Martin, and C. Marriott. Effects of molecular weight of polyvinylpyrrolidone on the glass transition and crystallization of co-lyophilized sucrose. Int. J. Pharm. 218:63–73 (2001). doi:10.1016/S0378-5173(01)00613-5.

    Article  PubMed  CAS  Google Scholar 

  10. S. Passot, F. Fonseca, M. Alarcon-lorca, D. Rolland, and M. Marin. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Eur. J. Pharm. Biopharm. 60:335–348 (2005). doi:10.1016/j.ejpb.2005.02.013.

    Article  PubMed  CAS  Google Scholar 

  11. Y. H. Liao, M. B. Brown, T. Nazir, A. Quader, and G. P. Martin. Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme. Pharm. Res. 19:1847–1853 (2002). doi:10.1023/A:1021445608807.

    Article  PubMed  CAS  Google Scholar 

  12. W. Q. Sun, and P. Davidson. Protein inactivation in amorphous sucrose and trehalose matrixes: effects of phase separation and crystallization. Biochim. Biophys. Acta. 1425:235–244 (1998).

    PubMed  CAS  Google Scholar 

  13. S. L. Shamblin, X. Tang, L. Chang, B. C. Hancock, and M. J. Pikal. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem. B. 103:4113–4121 (1999). doi:10.1021/jp983964+.

    Article  CAS  Google Scholar 

  14. B. C. Hancock, and S. L. Shamblin. Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim. Acta. 380:95–107 (2001).

    CAS  Google Scholar 

  15. B. C. Hancock, S. L. Shamblin, and G. Zografi. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 12:799–806 (1995). doi:10.1023/A:1016292416526.

    Article  PubMed  CAS  Google Scholar 

  16. I. Weuts, D. Kempen, K. Six, J. Peeters, G. Verreck, M. Brewster, and G. Van den Mooter. Evaluation of different calorimetric methods to determine the glass transition temperature and molecular mobility below Tg for amorphous drugs. Int. J. Pharm. 259:17–25 (2003). doi:10.1016/S0378-5173(03)00233-3.

    Article  PubMed  CAS  Google Scholar 

  17. G. P. Johari. Intrinsic mobility of molecular glasses. J. Chem. Phys. 58:1766–1770 (1973). doi:10.1063/1.1679421.

    Article  CAS  Google Scholar 

  18. G. P. Johari, and M. Goldstein. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53:2372–2388 (1970).

    Article  CAS  Google Scholar 

  19. K. L. Ngai. An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. J. Phys.: Condensed Matter. 15:S1107–S1125 (2003). doi:10.1088/0953-8984/15/11/332.

    Article  CAS  Google Scholar 

  20. T. Hikima, M. Hanaya, and M. Oguni. Microscopic observation of a peculiar crystallization in the glass transition region and β-process as potentially controlling the growth rate in triphenylethylene. J. Mol. Struct. 479:245–250 (1999). doi:10.1016/S0022-2860(98)00875-8.

    Article  CAS  Google Scholar 

  21. J. Alie, J. Menegotto, P. Cardon, H. Duplaa, A. Caron, C. Lacabanne, and M. Bauer. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J. Pharm. Sci. 93:218–233 (2004). doi:10.1002/jps.10520.

    Article  PubMed  CAS  Google Scholar 

  22. H. Fujimori, M. Mizukami, and M. Oguni. Calorimetric study of 1,3-diphenyl-1,1,3,3-tetramethyldisiloxane: emergence of α-, β-, and crystalline-glass transitions. J. Non-Crystal. Solids. 204:38–45 (1996). doi:10.1016/0022-3093(96)00177-9.

    Article  CAS  Google Scholar 

  23. H. Fujimori, and M. Oguni. Calorimetric study of D,L-propene carbonate: observation of the β- as well α-glass transition in the supercooled liquid. J. Chem. Thermodyn. 26:367–378 (1994). doi:10.1006/jcht.1994.1046.

    Article  CAS  Google Scholar 

  24. S. Vyazovkin, and I. Dranca. Physical stability and relaxation of amorphous indomethacin. J. Phys. Chem. B. 109:18637–18644 (2005). doi:10.1021/jp052985i.

    Article  PubMed  CAS  Google Scholar 

  25. S. Vyazovkin, and I. Dranca. Probing beta relaxation in pharmaceutically relevant glasses by using DSC. Pharm. Res. 23:422–428 (2006). doi:10.1007/s11095-005-9044-4.

    Article  PubMed  CAS  Google Scholar 

  26. H. S. Chen. On the mechanisms of structural relaxation in a Pd48Ni32P20 glass. J. Non-Crystal. Solids. 46:289–305 (1981). doi:10.1016/0022-3093(81)90007-7.

    Article  CAS  Google Scholar 

  27. V. A. Bershtein, and V. M. Egorov. Differential Scanning Calorimetry of Polymers. Ellis Horwood, New York, 1994.

    Google Scholar 

  28. S. L. Shamblin, L. S. Taylor, and G. Zografi. Mixing behavior of colyophilized binary systems. J. Pharm. Sci. 87:694–701 (1998). doi:10.1021/JS9704801.

    Article  PubMed  CAS  Google Scholar 

  29. S. Vyazovkin. Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature. J. Comput. Chem. 18:393–402 (1997). doi:10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  30. S. Vyazovkin. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22:178–183 (2001). doi:10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#.

    Article  CAS  Google Scholar 

  31. S. Vyazovkin, and N. Sbirazzouli. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 27:1515–1532 (2006). doi:10.1002/marc.200600404.

    Article  CAS  Google Scholar 

  32. T. Ozawa. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jap. 38:1881–1886 (1965). doi:10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  33. H. J. Flynn, and L. A. Wall. General treatment of the thermogravimetry of polymers. J. Res. Natl. Bureau Standards. 70A:487–523 (1966).

    Google Scholar 

  34. S. Vyazovkin, N. Sbirazzouli, and I. Dranca. Variation in activation energy of the glass transition for polymers of different dynamic fragility. Macromol. Chem. Phys. 207:1126–1130 (2006). doi:10.1002/macp.200600095.

    Article  CAS  Google Scholar 

  35. B. C. Hancock, C. R. Dalton, M. J. Pikal, and S. L. Shamblin. A pragmatic test of a simple calorimetric method for determining the fragility of some amorphous pharmaceutical materials. Pharm. Res. 15:762–767 (1998). doi:10.1023/A:1011931305755.

    Article  PubMed  CAS  Google Scholar 

  36. J. E. Green, R. Sitaula, A. Fowler, M. Toner, and S. Bhowmick. Enthalpic relaxation of convective desiccated trehalose–water glasses. Thermochim. Acta. 453:1–8 (2007). doi:10.1016/j.tca.2006.10.014.

    Article  CAS  Google Scholar 

  37. C. Bhugra, S. Rambhatla, A. Bakri, S. P. Duddu, D. P. Miller, M. J. Pikal, and D. Lechuga-Ballesteros. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J. Pharm. Sci. 96:1258–1269 (2007). doi:10.1002/jps.20918.

    Article  PubMed  CAS  Google Scholar 

  38. J. C. Phillips. Ideally glassy hydrogen-bonded networks. Phys. Rev. B: Condensed Matter. 73:024210 (2006).

    Google Scholar 

  39. L. M. Wang, V. Velikov, and C. A. Angell. Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J. Chem. Phys. 117:10184–10192 (2002). doi:10.1063/1.1517607.

    Article  CAS  Google Scholar 

  40. L. M. Wang, and C. A. Angell. Response to “Comment on ‘Direct determination of the fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities’” [J. Chem. Phys. 118, 10351.2003]. J. Chem. Phys. 118:10353–10355 (2003). doi:10.1063/1.1571815.

    Article  CAS  Google Scholar 

  41. L. M. Wang, C. A. Angell, and R. Richert. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125:074505 (2006).

    Article  PubMed  Google Scholar 

  42. T. Higashiyama. Novel functions and applications of trehalose. Pure Appl. Chem. 74:1263–1269 (2002). doi:10.1351/pac200274071263.

    Article  CAS  Google Scholar 

  43. G. Adam, and J. H. Gibbs. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43:139–146 (1965). doi:10.1063/1.1696442.

    Article  CAS  Google Scholar 

  44. S. H. Glarum. Dielectric relaxation of isoamyl bromide. J. Chem. Phys. 33:639–643 (1960). doi:10.1063/1.1731229.

    Article  CAS  Google Scholar 

  45. E. Donth. The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials. Springer, Berlin, 2001.

    Google Scholar 

  46. E. Hempel, G. Hempel, A. Hensel, C. Schick, and E. Donth. Characteristic length of dynamic glass transition near Tg for a wide assortment of glass-forming substances. J. Phys. Chem. B. 104:2460–2466 (2000). doi:10.1021/jp991153f.

    Article  CAS  Google Scholar 

  47. S. Vyazovkin, and I. Dranca. Comparative relaxation dynamics of glucose and maltitol. Pharm. Res. 23:2158–2164 (2006). doi:10.1007/s11095-006-9050-1.

    Article  PubMed  CAS  Google Scholar 

  48. A. D. Gusseme, L. Carpentier, J. F. Willart, and M. Descamps. Molecular Mobility in supercooled trehalose. J. Phys. Chem. B. 107:10879–10886 (2003). doi:10.1021/jp0343234.

    Article  Google Scholar 

  49. S. Vyazovkin, and I. Dranca. Activation energies derived from the pre-glass transition annealing peaks. Thermochim. Acta. 446:140–146 (2006). doi:10.1016/j.tca.2006.04.017.

    Article  CAS  Google Scholar 

  50. A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, and E. Rossler. The dielectric response of simple organic glass formers. J. Mol. Struct. 479:201–218 (1999). doi:10.1016/S0022-2860(98)00871-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dranca, I., Bhattacharya, S., Vyazovkin, S. et al. Implications of Global and Local Mobility in Amorphous Sucrose and Trehalose as Determined by Differential Scanning Calorimetry. Pharm Res 26, 1064–1072 (2009). https://doi.org/10.1007/s11095-008-9817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9817-7

KEY WORDS

Navigation